高考数学试题分类汇编解析几何(解答题2)及参考答案.doc_第1页
高考数学试题分类汇编解析几何(解答题2)及参考答案.doc_第2页
高考数学试题分类汇编解析几何(解答题2)及参考答案.doc_第3页
高考数学试题分类汇编解析几何(解答题2)及参考答案.doc_第4页
高考数学试题分类汇编解析几何(解答题2)及参考答案.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2006高考数学试题分类汇编-解析几何及解答(4)11(重庆文22)(本小题满分12分)如图,对每个正整数,是抛物线上的点,过焦点的直线角抛物线于另一点。()试证:;()取,并记为抛物线上分别以与为切点的两条切线的交点。试证:;证明:()对任意固定的因为焦点F(0,1),所以可设直线的方程为 将它与抛物线方程联立得: ,由一元二次方程根与系数的关系得()对任意固定的利用导数知识易得抛物线在处的切线的斜率故在处的切线的方程为:,类似地,可求得在处的切线的方程为:,由得:,将代入并注意得交点的坐标为由两点间的距离公式得:现在,利用上述已证结论并由等比数列求和公式得:12(重庆理22)(本小题满分12分) 已知一列椭圆。若椭圆上有一点,使到右准线的距离是与的等差中项,其中、分别是的左、右焦点。(I)试证:; (II)取,并用表示的面积,试 证:且 证:(I)由题设及椭圆的几何性质有,故。设,则右准线方程为.因此,由题意应满足即解之得:。即从而对任意(II)高点的坐标为,则由及椭圆方程易知因,故的面积为,从而。令。由得两根从而易知函数在内是增函数。而在内是减函数。 现在由题设取则是增数列。又易知。故由前已证,知,且13(浙江文)如图,椭圆1(ab0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=.()求椭圆方程;()设F、F分别为椭圆的左、右焦点,求证: 。解:()过 A、B的直线方程为 因为由题意得有惟一解。即有惟一解,所以, 故又因为 ,即 , 所以 从而得故所求的椭圆方程为.()由()得,所以 由 解得 , 因此.从而 ,因为, 所以14(浙江理)如图,椭圆1(ab0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=.()求椭圆方程;()设F、F分别为椭圆的左、右焦点,M为线段AF的中点,求证:ATM=AFT.解:(I)过点、的直线方程为因为由题意得 有惟一解,即有惟一解,所以 (),故 又因为 即 所以 从而得 故所求的椭圆方程为 (II)由(I)得 故从而由 解得所以 因为又得因此15(天津文)(本小题满分14分)如图,双曲线的离心率为、分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且(I)求双曲线的方程;(II)设和是轴上的两点。过点A作斜率不为0的直线使得交双曲线于C、D两点,作直线BC交双曲线于另一点E。证明直线DE垂直于轴。中心O为圆心,分别以和为半径作大圆和解:(I)根据题设条件,设点则、满足因解得,故利用得于是因此,所求双曲线方程为(II)解:设点则直线的方程为于是、两点坐标满足将代入得由已知,显然于是因为得同理,、两点坐标满足可解得所以,故直线DE垂直于轴。6(四川文)(本小题满分12分)已知两定点满足条件的点P的轨迹是曲线E,直线kx1与曲线E交于A、B两点。()求的取值范围;()如果且曲线E上存在点C,使求。解:()由双曲线的定义可知,曲线是以为焦点的双曲线的左支,且,易知 故曲线的方程为 设,由题意建立方程组 消去,得又已知直线与双曲线左支交于两点,有 解得 依题意得 整理后得或但 故直线的方程为设,由已知,得,又,点将点的坐标代入曲线的方程,得得,但当时,所得的点在双曲线的右支上,不合题意,点的坐标为到的距离为的面积17(四川理)(本小题满分12分)已知两定点满足条件的点P的轨迹是曲线E,直线kx1与曲线E交于A、B两点。如果且曲线E上存在点C,使求。本小题主要考察双曲线的定义和性质、直线与双曲线的关系、点到直线的距离等知识及解析几何的基本思想、方法和综合解决问题的能力。满分12分。解:由双曲线的定义可知,曲线是以为焦点的双曲线的左支,且,易知 故曲线的方程为 设,由题意建立方程组 消去,得又已知直线与双曲线左支交于两点,有 解得又 依题意得 整理后得 或 但 故直线的方程为设,由已知,得,又,点将点的坐标代入曲线的方程,得 得,但当时,所得的点在双曲线的右支上,不合题意,点的坐标为到的距离为 的面积18(上海文)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。上海文21.解(1)由已知得椭圆的半长轴a=2,半焦距c=,则半短轴b=1. 又椭圆的焦点在x轴上, 椭圆的标准方程为(2)设线段PA的中点为M(x,y) ,点P的坐标是(x0,y0),由x=得x0=2x1y=y0=2y由,点P在椭圆上,得, 线段PA中点M的轨迹方程是.(3)当直线BC垂直于x轴时,BC=2,因此ABC的面积SABC=1.当直线BC不垂直于x轴时,说该直线方程为y=kx,代入,解得B(,),C(,),则,又点A到直线BC的距离d=,ABC的面积SABC=于是SABC=由1,得SABC,其中,当k=时,等号成立.SABC的最大值是. 19(上海理)(本题满分14分)在平面直角坐标系O中,直线与抛物线2相交于A、B两点(1)求证:“如果直线过点T(3,0),那么3”是真命题;(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由解:(1)设过点T(3,0)的直线交抛物线y2=2x于点A(x1,y1)、B(x2,y2). 当直线的钭率不存在时,直线的方程为x=3,此时,直线与抛物线相交于点A(3,)、B(3,). =3; 当直线的钭率存在时,设直线的方程为,其中, 由得 又 , , 综上所述,命题“如果直线过点T(3,0),那么=3”是真命题;(2)逆命题是:设直线交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题. 例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为:,而T(3,0)不在直线AB上;说明:由抛物线y2=2x上的点A (x1,y1)、B (x2,y2) 满足=3,可得y1y2=6,或y1y2=2,如果y1y2=6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线AB过点(1,0),而不过点(3,0).yxOMDABC11212BE20(陕西文理)(本小题满分12分)如图,三定点A(2,1),B(0,1),C(2,1); 三动点D,E,M满足=t, = t , =t , t0,1 () 求动直线DE斜率的变化范围; ()求动点M的轨迹方程解法一: 如图, ()设D(x0,y0),E(xE,yE),M(x,y)由=t, = t , 知(xD2,yD1)=t(2,2) 同理 kDE = = = 12t t0,1 , kDE1,1() =t (x+2t2,y+2t1)=t(2t+2t2,2t1+2t1)=t(2,4t2)=(2t,4t22t) , y= , 即x2=4y t0,1, x=2(12t)2,2即所求轨迹方程为: x2=4y, x2,2解法二: ()同上yxOMDABC11212BE第21题解法图() 如图, =+ = + t = + t() = (1t

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论