




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆综合复习一、本章知识框架二、本章重点1圆的定义:2判定一个点P是否在O上3与圆有关的角(1)圆心角 (2)圆周角 圆周角的性质:圆周角等于它所对的弧所对的圆心角的一半同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等90的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形圆内接四边形的对角互补;外角等于它的内对角(3)弦切角:4圆的性质:在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(3)弦的垂直平分线过圆心,且平分弦对的两条弧(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦(5)平行弦夹的弧相等5三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示(4)垂心:是三角形三边高线的交点6切线的判定、性质:7圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等8直线和圆的位置关系:9圆和圆的位置关系:10两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点11圆中有关计算:圆的面积公式:,周长C2R圆心角为n、半径为R的弧长圆心角为n,半径为R,弧长为l的扇形的面积弓形的面积圆锥的侧面积三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条线,各弦被这点所分成的两段的积相等)2.切割线定理推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 说明:几何语言:若AB是直径,CD垂直AB于点P,则PC2=PAPB例1: 已知PT切O于T,PBA为割线,交OC于D,CT为直径,若OC=BD=4cm,AD=3cm,求PB长。解: 四、辅助线总结1.圆中常见的辅助线1)作半径,利用同圆或等圆的半径相等2)作弦心距,利用垂径定理进行证明或计算,或利用“圆心、弧、弦、弦心距”间的关系进行证明3)作半径和弦心距,构造由“半径、半弦和弦心距”组成的直角三角形进行计算4)作弦构造同弧或等弧所对的圆周角5)作弦、直径等构造直径所对的圆周角直角6)遇到切线,作过切点的弦,构造弦切角7)遇到切线,作过切点的半径,构造直角8)欲证直线为圆的切线时,分两种情况:(1)若知道直线和圆有公共点时,常连结公共点和圆心证明直线垂直;(2)不知道直线和圆有公共点时,常过圆心向直线作垂线,证明垂线段的长等于圆的半径9)遇到三角形的外心常连结外心和三角形的各顶点10)遇到三角形的内心,常作:(1)内心到三边的垂线;(2)连结内心和三角形的顶点11)遇相交两圆,常作:(1)公共弦;(2)连心线12)遇两圆相切,常过切点作两圆的公切线13)求公切线时常过小圆圆心向大圆半径作垂线,将公切线平移成直角三角形的一条直角边2、圆中较特殊的辅助线1)过圆外一点或圆上一点作圆的切线2)将割线、相交弦补充完整3)作辅助圆【中考热点】近年来,在中考中圆的应用方面考查较多,与一元二次方程、函数、三角函数、实际问题、作图等是中考中的热点,也是难点例2 已知相交于A、B两点,的半径是10,的半径是17,公共弦AB16,求两圆的圆心距解:分两种情况讨论:例3 如果圆柱的底面半径为4cm,母线长为5cm,那么侧面积等于( )A B C D例4 如图23-12,在半径为4的O中,AB、CD是两条直径,M为OB的中点,延长CM交O于E,且EMMC,连结OE、DE, (1)求EM的长(2)求sinEOB的值练习1、如图23-13,AB是O的直径,PB切O于点B,PA交O于点C,PF分别交AB、BC于E、D,交O于F、G,且BE、BD恰好是关于x的方程(其中m为实数)的两根(1)求证:BEBD;(2)若,求A的度数练习2、如图6,BE是O的直径,点A在EB的延长线上,弦PDBE,垂足为C,连结OD,且AOD=APC.(1) 求证:AP是O的切线;(2) 若OC:CB=1:2,且AB=9,求O的半径及sinA的值.练
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河道硬化改造方案范本
- 项目工程师施工方案
- 酒店运行监管方案范本
- 月度员工评选方案范本
- 音乐课件课程教学
- 印刷企业年终总结报告
- 征信从业人员上岗考试题及答案解析
- 列车员人身安全题库及答案解析
- 团队个人年终总结
- 楼梯窗口改造方案范本
- 2025年人教版三年级数学上册全册教案
- 《中国人首次进入自己的空间站》导学案 部编语文八年级上册
- Unit 2 My friends (Period 3) 课件2025-2026学年人教版英语四年级上册
- 烟花爆竹经营安全管理知识培训考核试题及答案
- 西游记第16回课件
- 医院微笑服务培训
- 2025年河南省住院医师规范化培训结业理论考核(外科)历年参考题库含答案详解(5卷)
- 2024年佛山市公务员考试行测试卷历年真题完整答案详解
- 2025年人武专干军事考试题库及答案
- 疲劳综合征治疗研究-洞察及研究
- 2025年秋期新课标人教版四年级上册数学全册教案(核心素养教案)
评论
0/150
提交评论