(6)三年的“不等式”考到怎样难度?.doc_第1页
(6)三年的“不等式”考到怎样难度?.doc_第2页
(6)三年的“不等式”考到怎样难度?.doc_第3页
(6)三年的“不等式”考到怎样难度?.doc_第4页
(6)三年的“不等式”考到怎样难度?.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

命题走势(6)(6) 三年的“不等式”考到怎样难度?不等式在高考中属主体内容,它与代数内容联系密切,高考中所占比例约为1015%.从近三年的高考试题来看,考查的内容及其难度主要以有以下几点:一、不等式的性质、基本不等式和绝对值不等式的考查,大多出现在选择题或填空题中,一般属于容易题或中档题.因此,关于这一部分的知识,考生在备考中要注意理解并深刻记忆基本公式.【例1】 (2006年江苏卷)设a、b、c是互不相等的正数,则下列等式中不恒成立的是(A)(B)(C)(D)解答:运用排除法,C选项,当a-b2的解集为(A)(1,2)(3,+) (B)(,+)(C)(1,2) ( ,+) (D)(1,2)解答:令2(x2),解得1x2(x2)解得x(,+)选C.【例5】 (2007年安徽卷)解不等式 解答:因为对任意,所以原不等式等价于即,故解为所以原不等式的解集为【点评】本题将绝对值和三角函数融合到解不等式中进行考查,其根源是高次不等式的解法,解简单的高次不等式时,将高次系数化为正,再进行因式分解(往往分解为多个一次因式的乘积的形式),然后运用“数轴标根”三、不等式几乎能与所有数学知识建立广泛的联系,复习时尤其是注意以导数或向量为背景的导数(或向量)、不等式、函数的综合题和有关不等式的证明或性质的代数逻辑推理题.【例6】 (2006年四川卷)已知函数f(x)=, f(x)的导函数是.对任意两个不相等的正数,证明:()当时,;()当时,。解答:()由 得 而 又 由、得即()证法一:由,得下面证明对任意两个不相等的正数,有恒成立即证成立设,则令得,列表如下:极小值 对任意两个不相等的正数,恒有证法二:由,得是两个不相等的正数设,则,列表:极小值 即 即对任意两个不相等的正数,恒有【点评】 本小题主要考查导数的基本性质和应用,函数的性质和平均值不等式等知识及综合分析、推理论证的能力,是一道综合性的难题.【例6】 (2007年四川卷)设函数.()当x=6时,求的展开式中二项式系数最大的项;()对任意的实数x,证明()是否存在,使得an恒成立?若存在,试证明你的结论并求出a的值;若不存在,请说明理由.解答:()解:展开式中二项式系数最大的项是第4项,这项是()证法一:因证法二:因而故只需对和进行比较。令,有由,得因为当时,单调递减;当时,单调递增,所以在处有极小值故当时,从而有,亦即故有恒成立。所以,原不等式成立。()对,且有又因,故,从而有成立,即存在,使得恒成立。【点评】本题考查函数、不等式、导数、二项式定理、组合数计算公式等内容.考查综合推理论证与分析解决问题的能力及创新意识.不等式本身体现的是放缩思想,所以本题紧扣求证的目标,证法一进行了四次放缩,第一次运用均值不等式放缩,第二次抓住进行放缩,第三次利用进行放缩,最后利用反比例函数的单调性实现了最后一次成功放缩,从而达到了求证的目标,该种解法难度比较大.第二种证明方法则抓住求证的目标,均值不等式放缩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论