高三数学复习资料平面向量.doc_第1页
高三数学复习资料平面向量.doc_第2页
高三数学复习资料平面向量.doc_第3页
高三数学复习资料平面向量.doc_第4页
高三数学复习资料平面向量.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高考数学必胜秘诀在哪?概念、方法、题型、易误点及应试技巧总结五、平面向量1、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。注意; 向量不能比较大小,但它们模能比较大小(2 零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量((4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:,规定零向量和任何向量平行。提醒:相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有);三点共线共线;(6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是。如下列命题:(1)若,则。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若,则是平行四边形。(4)若是平行四边形,则。(5)若,则。(6)若,则。其中正确的是_(答:(4)(5)2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,等;(3)坐标表示法:在平面内建立直角坐标系,以与轴、轴方向相同的两个单位向量,为基底,则平面内的任一向量可表示为,称为向量的坐标,叫做向量的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。3.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数、,使a=e1e2。如(1)若,则_(答:);(2)下列向量组中,能作为平面内所有向量基底的是 A. B. C. D. (答:B);(3)已知分别是的边上的中线,且,则可用向量表示为_(答:);(4)已知中,点在边上,且,则的值是_(答:0)4、实数与向量的积:实数与向量的积是一个向量,记作,它的长度和方向规定如下:当0时,的方向与的方向相同,当0时,的方向与的方向相反,当0时,注意:0。5、平面向量的数量积:(1)两个向量的夹角:对于非零向量,作,称为向量,的夹角,当0时,同向,当时,反向,当时,垂直。(2)平面向量的数量积:如果两个非零向量,它们的夹角为,我们把数量叫做与的数量积(或内积或点积),记作:,即。规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。如(1)ABC中,则_(答:9);(2)已知,与的夹角为,则等于_(答:1);(3)已知,则等于_(答:);(5)向量数量积的性质:设两个非零向量,其夹角为,则:;当,同向时,特别地,;当与反向时,;当为锐角时,0,且不同向,是为锐角的必要非充分条件;当为钝角时,0,且不反向,是为钝角的必要非充分条件;非零向量,夹角的计算公式:;。6、向量的运算:(1)几何运算:向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,那么向量叫做与的和,即;互为反向量和等于零向量 如向量的减法:用“三角形法则”:设,由减向量的终点指向被减向量的终点。注意:此处减向量与被减向量的起点相同。如(1)化简:_;_;_(答:;);(2)若正方形的边长为1,则_(答:);(3)若O是所在平面内一点,且满足,则的形状为_(答:直角三角形); (2)坐标运算:设,则:向量的加减法运算:,。实数与向量的积:。若,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。如设,且,则C、D的坐标分别是_(答:);平面向量数量积:。向量的模:。如已知均为单位向量,它们的夹角为,那么_(答:); 两点间的距离:若,则。如如图,在平面斜坐标系中,平面上任一点P关于斜坐标系的斜坐标是这样定义的:若,其中分别为与x轴、y轴同方向的单位向量,则P点斜坐标为。7、向量的运算律:(1)交换律:,;(2)结合律:,;(3)分配律:,。如下列命题中: ; ; ; 若,则或;若则;。其中正确的是_(答:)提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即,为什么?8、向量平行(共线)的充要条件:0。如(1)若向量,当_时与共线且方向相同(答:2);(2)已知,且,则x_(答:4);(3)设,则k_时,A,B,C共线(答:2或11)9、向量垂直的充要条件: .特别地。如(1)已知,若,则 (答:);(2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,则点B的坐标是_ (答:(1,3)或(3,1);(3)已知向量,且,则的坐标是_ (答:)12、向量中一些常用的结论:(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;(2),特别地,当同向或有;当反向或有;当不共线(这些和实数比较类似).13、同步练习(按向量每节顺序)例1 判断下列命题是否正确,若不正确,请简述理由.向量与是共线向量,则A、B、C、D四点必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形ABCD是平行四边形的充要条件是 模为0是一个向量方向不确定的充要条件;共线的向量,若起点不同,则终点一定不同.解:不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.不正确.单位向量模均相等且为1,但方向并不确定.不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.、正确.不正确.如图与共线,虽起点不同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.例2下列命题正确的是( )A.与共线,与共线,则与也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线,不符合已知条件,所以有与都是非零向量,所以应选C.评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合 1平行向量是否一定方向相同?(不一定)2不相等的向量是否一定不平行?(不一定)3与零向量相等的向量必定是什么向量?(零向量)4与任意向量都平行的向量是什么向量?(零向量)5若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)6两个非零向量相等的充要条件是什么?(长度相等且方向相同)7共线向量一定在同一直线上吗?(不一定)1. 练习1.下列各量中不是向量的是( )A.浮力B.风速 C.位移 D.密度2.下列说法中错误的是( )A.零向量是没有方向的 B.零向量的长度为0C.零向量与任一向量平行 D.零向量的方向是任意的3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段圆弧C.圆上一群孤立点 D.一个单位圆4.“两个向量共线”是“这两个向量方向相反”的 条件.5.已知非零向量,若非零向量,则与必定 .6.已知、是两非零向量,且与不共线,若非零向量与共线,则与必定 .例1如图,一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,求船的实际航行的速度的大小与方向(用与流速间的夹角表示).解:设表示船垂直于对岸行驶的速度,表示水流的速度,以AD,AB为邻边作平行四边形ABCD,则就是船的实际航行的速度.在中,所以因为答:船的实际航行的速度的大小为,方向与水流速间的夹角为例2平行四边形中,用,表示向量、解:由平行四边形法则得:= + , = = -变式一:当, 满足什么条件时,+与-垂直?(| = |)变式二:当, 满足什么条件时,|+| = |-|?(, 互相垂直)变式三:+与-可能是相当向量吗?(不可能,对角线方向不同)课堂练习:1.下列等式:+= +=+ -(-)= +(-)=0 +(-)=-正确的个数是( )A.2 B.3 C.4 D.52.下列等式中一定能成立的是( )A. += B. -=C.+= D. -=3.化简-+的结果等于( )A. B. C. D. 4.已知=, =,若|=12,|=5,且AOB=90,则|-|= .5.在正六边形ABCDEF中, =, =,则= .6.已知、是非零向量,则|-|=|+|时,应满足条件 .课后作业:1.在ABC中, =, =,则等于( )A.+ B.-+(-) C.- D.-2.O为平行四边形ABCD平面上的点,设=, =, =, =,则A.+ =0 B.-+- =0 C.+- =0 D.-+ =03.在下列各题中,正确的命题个数为( )(1)若向量与方向相反,且|,则+与方向相同(2)若向量与方向相反,且|,则-与+方向相同(3)若向量与方向相同,且|,则-与方向相反(4)若向量与方向相同,且|,则-与+方向相反A.1 B.2 C.3 D.4例1若32,3,其中,是已知向量,求,.分析:此题可把已知条件看作向量、的方程,通过方程组的求解获得、.解:记32 3得得11. 将代入有:评述:在此题求解过程中,利用了实数与向量的积以及它所满足的交换律、结合律,从而解向量的二元一次方程组的方法与解实数的二元一次方程组的方法一致.例2判断向量与是否共线?解:(1)当时,则由于“零向量与任一向量平行”且“平行向量也是共线向量”,所以,此时与共线.(2)当时,则,(这时满足定理中的,及有且只有一个实数(),使得成立)与共线.综合(1)、(2)可知,与共线.向量是数学中重要概念之一,是解决数学问题的得力工具,它简洁明快,许多几何里的命题,如果用向量知识来解决就显得格外简练.例3如图,MN是ABC的中位线,求证:MNBC,且MNBC.证明:M、N分别是AB、AC边上的中点,所以=,=,=-=(-)=.因此,且BC.例4 1、若M(3, -2) N(-5, -1) 且 , 求P点的坐标;解:设P(x, y) 则(x-3, y+2)=(-8, 1)=(-4, ) P点坐标为(-1, -)2若A(0, 1), B(1, 2), C(3, 4) 则-2=(-3,-3)3已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD是梯形解:=(-2, 3) =(-4, 6) =2 且 | 四边形ABCD是梯形例1 判断正误,并简要说明理由;0;若,则对任一非零有;,则与中至少有一个为;对任意向量,都有()();与是两个单位向量,则解:上述8个命题中只有正确;对于:两个向量的数量积是一个实数,应有;对于:应有;对于:由数量积定义有cos,这里是与的夹角,只有或时,才有;对于:若非零向量、垂直,有;对于:由可知可以都非零;对于:若与共线,记则()()(),()()()()若与不共线,则()()例2 已知,当,与的夹角是60时,分别求解:当时,若与同向,则它们的夹角,cos036118;若与反向,则它们的夹角180,cos18036(-1)18;当时,它们的夹角90,;当与的夹角是60时,有cos60369评述:两个向量的数量积与它们的夹角有关,其范围是0,180,因此,当时,有0或180两种可能例2 已知(1, 2),(2, 3),(-2, 5),求证:ABC是直角三角形证明:=(2-1, 3-2) = (1, 1), = (-2-1, 5-2) = (-3, 3)=1(-3) + 13 = 0 ABC是直角三角形例4 已知(,),(,),则与的夹角是多少?分析:为求与夹角,需先求及,再结合夹角的范围确定其值.解:由(,),(,)有(),记与的夹角为,则cos又,课堂练习:1.若=(-4,3),=(5,6),则3|( )A.23 B.57 C.63 D.832.已知A(1,2),B(2,3),C(-2,5),则ABC为( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不等边三角形3.已知=(4,3),向量是垂直的单位向量,则等于( )A.或 B.或C.或 D.或4.=(2,3),=(-2,4),则(+)(-)= .5.已知(3,2),(-1,-1),若点P(x,-)在线段的中垂线上,则x=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论