让证明轻松起来.docx_第1页
让证明轻松起来.docx_第2页
让证明轻松起来.docx_第3页
让证明轻松起来.docx_第4页
让证明轻松起来.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

“让”证明轻松起来在整个中学阶段,我们使用的北师大版初中数学教材中专门安排了三章证明,并在各年级的几何图形性质探索时穿插讲解了大量的证明题,并且在各册期末及升学考试中都占有很大的比重。可见证明在中学数学中占有极其重要的地位,学生能解决这类问题就显得十分重要。但这类问题恰恰是我们大部分学生的难点。许多学生在实际解决证明题的过程中,却因为种种原因而感到无从下手!如何求解证明题呢?如何让学生不再畏惧证明题呢?怎样才能让我们的证明变得轻松、简单起来呢?这成了摆在我们每一位中学数学老师面前的一大问题。我们到底该怎么做呢?我个人认为可从以下几个方面入手:一、要有科学的方法 影响学生学习成绩好坏的因素很多,例如学习目的、学习态度、学习方法、先天遗传素质、后天身体状况、教师与家长教育水平高低以及教育方法是否得当,校园小环境与社会大气候的影响、原有知识基础好差以及智力、能力强弱等等。其中最重要的是两条:一是想学;二是会学。 会不会学习,也就是学习方法是否科学,对广大青少年学生来说,确实是至关重要的。 上课前,有的学生对老师这堂课要讲的内容一无所知,坐等老师上课讲解,老师讲什么就听是什么,老师叫干什么就干什么,显得呆板被动,缺少学习的积极性和主动性。有的学生课前认真预习,听课时有的放矢,对预习发现的难点、重点和关键的地方细听详记、思考理解,当堂掌握,在学习中较好地发挥了主体作用。同是预习,方法也不一样。有的看起书来,象是看小说似的,不大容易发现问题,更难掌握教材的内在联系,即使发现什么问题,也不停下来问个为什么,不去追根求源;有的看书时动手又动脑,把新课中的旧概念、旧知识查个水落石出,对新课中的问题能理解的就当时弄通,弄不通的就记下来,等上课时集中注意力听老师分析讲解。 课堂上,有的学生全神贯注,专心听讲;有的分心走神,瞌睡打盹。同是听课,有的像架录音机,全听全录;有的像个速记员,边听边记,记了一大本,问题一大堆;有的以听为主,边听边思考,有了问题记下来;有的干脆不记,只顾听讲;同样是思考,有的思考当堂内容,有的思考与本课相关的知识体系,有的思考教师的思路,有的拿自己的思路与教师的思路相比较。 下课后,有的学生抢做作业,作业一完,万事大吉;有的先回忆复习课上讲的内容,然后看书整理笔记,把教材充分理解掌握了,才开始做作业。有的课上未听懂,下课也不问,随它去了,玩得天晕地黑。 同样,在看参考书、做习题、阶段总结、考前复习以及考后分析等其它环节上,也都存在着种种不同的做法。 以上是从每个具体学习环节上看的。如果从学习整体过程上看,也是形式多样,方法各异。有的先预习后上课;有的不预习就上课;有的只重视上课,课后抄抄作业就算;有的课上未听好,课后一头钻进作业堆里面;有的上课记笔记,下课对笔记,考试背笔记;也有的课前认真预习,课上专心听讲,课后及时整理,独立完成作业,按期做好阶段复习总结;还有的定有周密的学习计划,合理地安排时间,科学地进行预习、听课、作业、复习、总结,考试时胸有成竹,每考必胜 那么科学的学习方法在哪儿呢?近几年我通过与大量老师、学生的谈话和了解,总结他们的看法:每天几节课中的新授课,都要按照 :预习上课整理作业这四个步骤组成的环节滚动一次。一个章节结束,都要进行系统复习总结这一步骤,使每课时的小环环环相扣,形成整体,不仅如此,他们在每个步骤上都有许多具体做法和严格要求,对可能出现的不同情况,也都有得力的措施。把这些做法、要求和措施集中起来,把前四个步骤称为环节,构成完成每一课时的学习不可缺少的四环,加上最后一个步骤,合称“四环一步”。按照这一过程去学习,并在学习过程中,按每一环节和步骤上的科学方法去做,就称为“四环一步”学习法。 如果从一个阶段或一个章节来看,教师在教几个课时之后,一般要按章节,按单元把所学内容联系起来复习总结一次,学生也往往要根据所学内容的知识结构进行复习总结,使自己的知识前后衔接,达到系统掌握之目的。 由此可以看出,学生学习过程应由每一课时的四大环节加上阶段系统复习总结这一必要步骤组成,“四环节”以上课为中心,每天必做;“一步”按章节,分单元进行。四环节、一步骤,节节相连,步步相通,构成了学习过程的有机整体。预习是起始环节。为上课扫清障碍,开辟道路,做好知识上的准备;上课是中心环节,既是预习的目的,又是对预习的检验,同时对下面几个环节起到关键作用;课后整理消化是中继环节,是上课的延续和加强,又为顺利做作业创造条件;独立完成作业是深化环节,既巩固前面的成果,又为阶段复习提供了典型材料;系统复习总结是贯通步骤,是对本阶段诸课时学习的回顾与总结、提高与升华,又为转入下一阶段学习奠定了基础。“四环一步”缺一不可,否则,就使学习过程中断,破坏学习的连贯性和方法的整体性。运用这一方法进行学习,符合中学生掌握知识的心理过程,又与教师教的过程相配合,相辅相成,浑为一体,符合教学活动的客观规律。 二、要有严谨、良好的学习态度。要想轻松完成证明,对学习技巧的掌握是极其重要的,但初中数学的几何证明题,熟练运用和记忆相关性质、定理也是很关键的。这就要求我们在学习的时候要有良好的学习态度,并能够对这些性质定理进行归类,哪些性质定理能够证明哪些问题,形成一个比较系统的知识体系。这样,我们的证明就能够起到事半功倍的效果。如:(一)、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。( 二)、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中的等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。 4.两条平行线的同位角、内错角或平行四边形的对角相等。 5.同角(或等角)的余角(或补角)相等。 6同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。 7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。 8.相似三角形的对应角相等。 9.圆的内接四边形的外角等于内对角。 10.等于同一角的两个角相等。 (三)、证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。 2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。 3.在一个三角形中,若有两个角互余,则第三个角是直角。 4.邻补角的平分线互相垂直。 5.一条直线垂直于平行线中的一条,则必垂直于另一条。 6.两条直线相交成直角则两直线垂直。 7.利用到一线段两端的距离相等的点在线段的垂直平分线上。 8.利用勾股定理的逆定理。 9.利用菱形的对角线互相垂直。 10.在圆中平分弦(或弧)的直径垂直于弦。 11.利用半圆上的圆周角是直角。 (四)、证明两直线平行 1.垂直于同一直线的各直线平行。 2.同位角相等,内错角相等或同旁内角互补的两直线平行。 3.平行四边形的对边平行。 4.三角形的中位线平行于第三边。 5.梯形的中位线平行于两底。 6.平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。 三、具体来说,我们应该怎样来解决证明题呢?有怎样的技巧呢?根据我多年的教学经验,结合大部分学生的认知水平,本人认为可以从以下六个方面来解决:例题证明:等腰三角形两底角的平分线相等1. 弄清题意此为“文字型”数学证明题,既没有图形,也无直观的已知与求证。如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果,那么”的形式,其中“如果”就是命题的条件,“那么.”就是命题的结论,据此对题目进行改写:如果在等腰三角形中分别作两底角的平分线,那么这两条平分线长度相等。于是题目的意思就很清晰了,就是在等腰三角形中作两底角平分线,然后根据已知的条件去求证这两条平分线相等。这样题目要求我们做什么就一目了然了!2. 根据题意,画出图形。图形对解决证明题,能起到直观形象的提示,所以画图必须与题意相符合,并且把题中已知的条件,能标在图形上的尽量标在图形上。 3. 根据题意与图形,用数学的语言与符号写出已知和求证。众所周知,命题的条件-已知,命题的结论-求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。已知:如图(省略),在ABC中,AB=AC, BD、CE分别是ABC的角平分线。求证:BD=CE4. 分析已知、求证与图形,探索证明的思路。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。分析:此题要想证明 BD=CE ,就要引导学生观察图形(图形(1),弄清题意。发现BD、CE分别存在于两对三角形中:ABD与ACE,BEC与CDB,只要能证明其中任何一对三角形全等,即可利用全等三角形性质得到对应边相等。(此思维属于逆向思维)5. 根据证明的思路,用数学的语言与符号写出证明的过程证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”,在书写是都要符合公理、定理、推论或以已知条件相吻合,不能无中生有、胡说八道,要有根有据!证明:AB=AC(已知)ABC=ACB(等边对等角)BD、CE分别是ABC的角平分线(已知)1=ABC, 2=ACB(角平分线的定义)1=2(等量代换)在BEC与CDB中,ACB=ABC, BC=CB, 1=2BEC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论