




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
厦门市2006年初中毕业和高中阶段各类学校招生考试数 学 试 卷(满分:150分;考试时间:120分钟)考生须知:1.解答的内容一律写在答题卡上,否则不得分.交卷只交答题卡,本卷由考场统一处理,考生请勿擅自带走. 2.答题、画线一律用0.5毫米的黑色签字笔.一、选择题:(本大题有7小题,每小题3分,共21分.每小题都有四个选项,其中有且只有一个选项是正确的)1. 下面几种图形,一定是轴对称图形的是A.等腰梯形B.直角梯形C.平行四边形D.直角三角形【解析】本题考查判断轴对称图形的方法.(七年级)判断轴对称图形的方法是能找出一条对称轴,使得该图形沿对称轴对折后可以完全重合,通过观察,比较容易就可以得出答案.【答案】A2. 4的平方根是 A.2 B.2 C.2 D.16【解析】本题考查对数的开方的基本运算.(八年级) ,4的平方根是.【答案】C3. 函数中自变量的取值范围是A. B. C. D.【解析】本题考查的是函数自变量取值范围的求法.(八年级),【答案】C4. 下列事件,是必然事件的是A.掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B.掷一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数就是偶数C.随机从0,1,2,9这10个数中选取两个数,和为20D.打开电视,正在播广告【解析】本题考查对事件的判断.(七年级)本题根据常识即可做出决断.【答案】B5. 已知关于的方程的两根分别是0和2,则、的值分别是 A., B. , C., D. ,【解析】本题考查对韦达定理(根与系数的关系)的简单运用.(九年级) 由于选项中是确定的,所以只要考虑就可以了,.【答案】A6. 下列的图形都是由6个大小一样的正方形拼接而成的,可以看成正方形表面展开图的是A.B.C.C.D.【解析】本题考查的是学生的立体思维能力.(七年级) 通过观察思考,容易的出答案.【答案】A7. 下面四个结论中,正确的是 A. B. C. D. 【解析】本题考查的是对根式范围的判断.(八年级) 本题是课本题目的改编题,这题解法有很多种, 法一:首先选项中全部都是正数,故在不等式两边均乘以2再判断,经过观察,容易的出答案.法二:首先选项中全部都是正数,故在不等式两边均乘以2再判断,答案也容易的出.法三:差值比较法:首先选项中全部都是正数,故在不等式两边均乘以2法四:商值比较法:首先选项中全部都是正数,故在不等式两边均乘以2法五:平方比较法:首先选项中全部都是正数,故在不等式两边均乘以2【答案】D评价:今年中考的选择题够基础,只单纯考查一些基本的纯数学运算、判断能力,并没有多大的创新性,但是对一些基础薄弱的考生来说,这样的题目无疑是雪中送炭,让人倍感兴喜。 试题考查内容在初中三年的分布情况:年级七年级八年级九年级题号1、4、62、3、75所占比例4286%4286%1428% 统计图: 从统计图中我们很容易就可以观察出今年中考选择题考查内容占初中三年的比例,从而我们应当更加重视七、八年级的数学的学习。重视基础,是今后教学学习的重点!二、填空题:(本大题有10小题,每小题4分,共40分)8. = .【解析】本题考查的是绝对值的基本运算.(七年级)【答案】29. 长江三峡水电站的总装机容量是18200000千瓦,用科学计数法表示为 .【解析】本题考查的是科学技术法的表示方法.(七年级)本题出题人有意联系近期生活的大事出题,近期三峡工程的确十分引人注意。 还应注意青藏铁路的总长度的科学计数表示方法的问题.【答案】千瓦或瓦10. 计算= .【解析】本题考查幂指数运算的综合计算.(七年级)【答案】511. 不等式组的解集是 .【解析】本题考查解不等式组的方法.(八年级)【答案】12. 两圆的半径分别为3cm和4cm,圆心距为2cm,那么这两圆的位置关系是 .【解析】本题考查两圆的位置关系的判断.(九年级)【答案】相交13. 一个扇形的圆心角为60,半径为10cm,则这个扇形的弧长是 cm.【解析】本题考查的是扇形的弧长公式的运用.(九年级) 【答案】14. 抛物线的顶点坐标是 .【解析】本题考查的是二次函数的配方.(九年级) 故顶点的坐标是(1,3)【答案】(1,3)15. 从地面到高空11千米之间,气温随高度的升高而下降,每升高1千米,气温下降6.已知某处地面气温为23,设该处离地面千米处的气温为,则与的函数关系式是 .【解析】本题考查的是一次函数的应用.(八年级)【答案】16. 某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计防护林的树林数量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65100,63200,64600,64700,67400. 那么根据以上的数据估算这一防护林总共约有 棵树.【解析】本题考查的是统计的实际应用.(七年级) (6510063200646006470067400)5100=6500000(棵)【答案】650000017. 以边长为2cm的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是 cm.【解析】本题考查的是寻找规律的能力.(八年级) 列一下表格或画一下图: 第一个正三角形第二个正三角形第三个正三角形第个正三角形(边长)2cm(高) 第十个正三角形的边长为【答案】评价:今年中考的填空题考查得也角为基础,但是相对于选择题,填空设置了许多联系生活实际的题目,充分体现了数学在实际的应用,排除了一些生观点上认为数学无用的思想,同时也为底子较差的学生提供了拿分的机会,这点更有利于其发挥自己,展现自我! 试题考查内容在初中三年的分布情况:年级七年级八年级九年级题号8、9、10、1611、15、1712、13、14所占比例40%30%30% 统计图: 从统计图中我们很容易就可以观察出今年中考选择题考查内容占初中三年的比例,从而我们应当更加重视七、八年级的数学的学习。重视基础,是今后教学学习的重点!三、解答题:(本大题共9小题,共89分)18. (本题满分8分) 先化简,再求值,其中【解析】本题考查的化简与计算的综合运算.(八年级)【答案】解:原式= ,代入 则原式=19. (本题满分8分) 甲袋中装着19只红球和6只黑球,乙袋中则放着170只红球,67只黑球和13只白球,这些球除了颜色外没有其他区别,两袋中球已经搅匀.如果只给一次机会,蒙上眼睛从一个口袋中摸出一个球,摸到黑球即获奖,那么选哪个口袋摸球获奖几率大?请说明理由.【解析】本题考查的是概率的实际应用.(七年级)【答案】解:甲袋摸中黑球的概率为:= 乙袋摸中黑球的概率为:= =,= 显然 选择乙袋摸球获奖的几率比较大.20. (本题满分9分) 如图1,在平行四边形ABCD中,E、F分别是AB、CD上的点,且DAF=BCE.(1)求证:DAFBCE;(2)若ABC=60,ECB=20,ABC的平分线BN交AF于M,交AD于N,求AMN的度数ADBECF图1【解析】本题考查的是全等三角形与的综合运用.(九年级)【答案】(1)证明:在平行四边形ABCD中, AD=AF,D=B 又DAF=BCE DAFBCE(ASA)ADBECF图1(2)NMQ (2)解:四边形QCFM的内角和为360 则QMF+MFC+FCQ+CQM =AMN+80+100+50=360 AMN=13021. (本题满分8分) 2006年3月25日,来自39个国家和地区的运动员参加了厦门国际马拉松赛.图2是本次全程马拉松、半程马拉松、10公里赛程、5公里赛程各项目参赛人数占全体参赛人数比例的扇形统计图. (1)求参加全程马拉松赛的人数占全体参赛人数的百分比; (2)已知参加10公里赛程的人数为7200人,求参赛全程马拉松的人数.10公里34.4%5公里33.5%全程半程14.9%图2【解析】本题考查对数据的处理能力.(七年级)【答案】解:(1) (2)(人) (人)ABACADA图3ABACADA图3(2)E22. (本题满分10分) 如图3,两建筑物的水平距离BC为27米,从点A测得点D的俯角为=30,测得点C的俯角=60,求AB和CD两建筑物的高.【解析】本题考查的是对三角函数实际运用.(八年级)【答案】解:(米) (米) (米)23. (本题满分10分) 如图4,学校生物兴趣小组的同学们用围栏围了一个面积为24平方米的矩形饲养场地ABCD.设BC为米,AB为米. (1)求与的函数关系式;ABACADAEAFA图4(2)延长BC至E,使CE比BC少1米,围成一个新的矩形ABEF,结果场地的面积增加了16平方米,求BC的长.【解析】本题考查的是函数应用题的运用.(八年级)【答案】解:(1) (2)列方程组得:得:24. (本题满分12分) 如图5,在四边形ABCD中,A=90, ABC与ADC互补. (1)求C的度数;(2)若BCCD且AB=AD,请在图5上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;DCBA图5DCBA图5(2)EF(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.【解析】本题考查了几何知识的综合运用.(九年级)【答案】解:(1)四边形ABCD的内角和为360, 则C=36018090=90 (2)过A点作AEDC, 在ABE与ADF中, ABEADF 又 四边形ABCD为正方形 (3)S四边形ABCD=25. (本题满分12分) 如图6,O的直径AB交TP于P,若PA=18,PT=12,PB=8.AOTBP图6AOTBP图6(2)(1)求证:PTBPAT;(2)求证:PT为O的切线;(3)在上是否存在一点C,使得BT2=8TC?若存在,请证明;若不存在,请说明理由.【解析】本题考查了圆内运算的综合能力.(九年级)【答案】(1)证明:P=P 又 PTBPAT (2)证明:连结 在中,=90AOTBP图6(3)C 又T为O上一点 PT为O的切线(3)解:BT2=8TC 即: 假设存在这样一点C CT=x 由BCTPAT BCTPAT 故不存在这样的C点26. (本题满分12分) 已知P(,)是抛物线上的点,且点P在第一象限.(1)求的值(2)直线过点P,交轴的正半轴于点A,交抛物线于另一点M.当时,OPA=90是否成立?如果成立,请证明;如果不成立,举出一个反例说明;OPAM当时,记MOA的面积为S,求的最大值.【解析】本题考查的是二次函数的综合运算能力.(九年级)【答案】(1) (2)b=2a, P在直线上,则 A(2,0) M(-1,a) OPA=90 即, , P(1,1) 故存在这样的点P 又 S=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- “艺术与多领域的跨界盛宴”展览商业计划书
- 2025年中国停车场自动收款机行业发展运行现状及发展趋势预测报告
- 三门峡内窥镜项目可行性研究报告
- 中国菠菜种植行业市场深度分析及投资规划建议报告
- 微电解处理印染废-洞察及研究
- 高职工程热力学课件09气体和蒸汽的流动
- 郑州电子商务职业学院《人体素描》2023-2024学年第二学期期末试卷
- 闽北职业技术学院《检验核医学》2023-2024学年第二学期期末试卷
- 广西自然资源职业技术学院《生物信息软件与数学方法1》2023-2024学年第二学期期末试卷
- 广西生态工程职业技术学院《药品生产质量管理与工程》2023-2024学年第二学期期末试卷
- GB 39496-2020 尾矿库安全规程
- 号楼桩基施工竞争性谈判采购
- 中国华电集团公司火电厂烟气脱硫工程(石灰石-石膏湿法)设计导则(A版)
- 译林版五下英语作文范文系列一
- 《小学英语小组合作学习的研究》课题结题报告
- 设计失效模式分析报告(DFMEA)
- 事业单位专业技术岗位说明书(小学)
- 广东省中医药文化养生旅游
- 试验设计与数据处理作业333333
- 树脂胶水物质资料安全表(MSDS)
- 降低给药错误发生率.pptx
评论
0/150
提交评论