函数概念与基本初等函数高中数学知识点总结.doc_第1页
函数概念与基本初等函数高中数学知识点总结.doc_第2页
函数概念与基本初等函数高中数学知识点总结.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DBFQ DFDF ZHUOYUE函数概念与基本初等函数高中数学知识点总结 函数贯穿整个初中和高中阶段,不但是中考的重要内容,也是高考重要内容,所以参加高考的考生务必重视,酷课网精心为今年考生准备了本章的,希望能给考生带来意想不到的帮助。一、命题热点分析近几年的高考试题,可以发现函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考考查的热点。选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势。2012年高考热点主要有:考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.二、知识点总结1映射:注意: 第一个集合中的元素必须有象;一对一或多对一.2函数值域的求法:分析法 ;配方法 ;判别式法 ;利用函数单调性 ;换元法 ;利用均值不等式 ; 利用数形结合或几何意义(斜率、距离、绝对值的意义等);利用函数有界性(等);平方法; 导数法3复合函数的有关问题:(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式a g(x) b解出 若fg(x)的定义域为a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域.(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数 分别研究内、外函数在各自定义域内的单调性根据“同性则增,异性则减”来判断原函数在其定义域内的单调性.4分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。5函数的奇偶性:函数的定义域关于原点对称是函数具有奇偶性的必要条件是奇函数;是偶函数.奇函数在0处有定义,则在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性6函数的单调性:单调性的定义:在区间上是增函数当时有;在区间上是减函数当时有;单调性的判定:定义法:一般要将式子化为几个因式作积或作商的形式,以利于判断符号;导数法(见导数部分);复合函数法;图像法注:证明单调性主要用定义法和导数法。7函数的周期性:(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期:; ;(3)与周期有关的结论:8基本初等函数的图像与性质:指数函数:;对数函数:;幂函数: ( ;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:(a0);其它常用函数:正比例函数:;反比例函数:;函数.分数指数幂:;(以上,且). .; ; .对数的换底公式:.对数恒等式:.9二次函数:解析式:一般式:;顶点式:,为顶点;零点式: (a0).二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数的图象的对称轴方程是,顶点坐标是。10函数图象: 图象作法 :描点法 (特别注意三角函数的五点作图)图象变换法 导数法图象变换: 平移变换:),左“+”右“”; ) 上“+”下“”; 对称变换:););) ; ); 翻折变换:)(去左翻右)y轴右不动,右向左翻(在左侧图象去掉);)(留上翻下)x轴上不动,下向上翻(|在下面无图象);11函数图象(曲线)对称性的证明:(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然。注:曲线C1:f(x,y)=0关于原点(0,0)的对称曲线C2方程为:f(x,y)=0;曲线C1:f(x,y)=0关于直线x=0的对称曲线C2方程为:f(x, y)=0; 曲线C1:f(x,y)=0关于直线y=0的对称曲线C2方程为:f(x, y)=0;曲线C1:f(x,y)=0关于直线y=x的对称曲线C2方程为:f(y, x)=0f(a+x)=f(bx) (xR)y=f(x)图像关于直线x=对称;特别地:f(a+x)=f(ax) (xR)y=f(x)图像关于直线x=a对称.的图象关于点对称.特别地:的图象关于点对称.函数与函数的图象关于直线对称; 函数与函数的图象关于直线对称。12函数零点的求法:直接法(求的根);图象法;二分法.(4)零点定理:若y=f(x)在a,b上满足f(a)f(b)0 , 则y=f(x)在(a,b)内至少有一个零点。 由于本章是非常重要,所以酷课网对本章做了清晰的知识点总结和命题热点,希望考生抓住命题热点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论