已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分类讨论思想思想方法解读分类讨论思想是一种重要的数学思想方法,其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略1中学数学中可能引起分类讨论的因素:(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列an的前n项和公式等(3)由性质、定理、公式的限制而引起的分类讨论:如函数的单调性、基本不等式等(4)由图形的不确定性而引起的分类讨论:如二次函数图象、指数函数图象、对数函数图象等(5)由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等2进行分类讨论要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论其中最重要的一条是“不重不漏”3解答分类讨论问题时的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不重不漏、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论常考题型精析题型一由概念、公式、法则、计算性质引起的分类讨论例1设集合AxR|x24x0,BxR|x22(a1)xa210,aR,若BA,求实数a的取值范围解A0,4,BA,于是可分为以下几种情况(1)当AB时,B0,4,由根与系数的关系,得解得a1.(2)当BA时,又可分为两种情况当B时,即B0或B4,当x0时,有a1;当x4时,有a7或a1.又由4(a1)24(a21)0,解得a1,此时B0满足条件;当B时,4(a1)24(a21)0,解得a0,a1)在1,2上的最大值为4,最小值为m,且函数g(x)(14m)在0,)上是增函数,则a_.答案解析若a1,有a24,a1m,此时a2,m,此时g(x)在0,)上为减函数,不合题意若0a1,有a14,a2m,此时a,m,检验知符合题意题型二分类讨论在含参函数中的应用例2已知函数f(x)x22ax1a在x0,1上有最大值2,求a的值解函数f(x)x22ax1a(xa)2a2a1,对称轴方程为xa.(1)当a1时,f(x)maxf(1)a,a2.综上可知,a1或a2.点评本题中函数的定义域是确定的,二次函数的对称轴是不确定的,二次函数的最值问题与对称轴息息相关,因此需要对对称轴进行讨论,分对称轴在区间内和对称轴在区间外,从而确定函数在给定区间上的单调性,即可表示函数的最大值,从而求出a的值变式训练2(2015江苏)已知函数f(x)x3ax2b(a,bR)(1)试讨论f(x)的单调性;(2)若bca(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(,3),求c的值解(1)f(x)3x22ax,令f(x)0,解得x10,x2.当a0时,因为f(x)3x20,所以函数f(x)在(,)上单调递增;当a0时,x(0,)时,f(x)0,x时,f(x)0,所以函数f(x)在,(0,)上单调递增,在上单调递减;当a0时,x(,0)时,f(x)0,x时,f(x)0,所以函数f(x)在(,0),上单调递增,在上单调递减(2)由(1)知,函数f(x)的两个极值为f(0)b,fa3b,则函数f(x)有三个零点等价于f(0)fb0,从而或又bca,所以当a0时,a3ac0或当a0时,a3ac0.设g(a)a3ac,因为函数f(x)有三个零点时,a的取值范围恰好是(,3),则在(,3)上g(a)0,且在上g(a)0均恒成立从而g(3)c10,且gc10,因此c1.此时,f(x)x3ax21a(x1)x2(a1)x1a,因函数有三个零点,则x2(a1)x1a0有两个异于1的不等实根,所以(a1)24(1a)a22a30,且(1)2(a1)1a0,解得a(,3).综上c1.题型三根据图形位置或形状分类讨论例3在约束条件下,当3s5时,z3x2y的最大值的变化范围是()A6,15 B7,15C6,8 D7,8答案D解析由取点A(2,0),B(4s,2s4),C(0,s),C(0,4)(1)当3s4时,可行域是四边形OABC,如图(1)所示,此时,7z|PF2|,4,2,2.综上知,或2.高考题型精练1对于R上可导的任意函数f(x),若满足(x1)f(x)0,则必有()Af(0)f(2)2f(1)答案C解析依题意,若任意函数f(x)为常函数时,则(x1)f(x)0在R上恒成立;若任意函数f(x)不是常函数时,当x1时,f(x)0,函数f(x)在(1,)上是增函数;当x1时,f(x)f(1),f(2)f(1),综上,则有f(0)f(2)2f(1)2已知数列an的前n项和Snpn1(p是常数),则数列an是()A等差数列B等比数列C等差数列或等比数列D以上都不对答案D解析Snpn1,a1p1,anSnSn1(p1)pn1(n2),当p1且p0时,an是等比数列;当p1时,an是等差数列;当p0时,a11,an0(n2),此时an既不是等差数列也不是等比数列3已知变量x,y满足的不等式组表示的是一个直角三角形围成的平面区域,则实数k等于()A B.C0 D或0答案D解析不等式组表示的可行域如图(阴影部分)所示,由图可知若不等式组表示的平面区域是直角三角形,只有直线ykx1与直线x0垂直(如图)或直线ykx1与直线y2x垂直(如图)时,平面区域才是直角三角形由图形可知斜率k的值为0或.4(2014四川)设mR,过定点A的动直线xmy0和过定点B的动直线mxym30交于点P(x,y),则|PA|PB|的取值范围是()A,2 B,2C,4 D2,4答案B解析由动直线xmy0知定点A的坐标为(0,0),由动直线mxym30知定点B的坐标为(1,3),且两直线互相垂直,故点P在以AB为直径的圆上运动故当点P与点A或点B重合时,|PA|PB|取得最小值,(|PA|PB|)min|AB|.当点P与点A或点B不重合时,在RtPAB中,有|PA|2|PB|2|AB|210.因为|PA|2|PB|22|PA|PB|,所以2(|PA|2|PB|2)(|PA|PB|)2,当且仅当|PA|PB|时取等号,所以|PA|PB|2,所以|PA|PB|2,所以|PA|PB|的取值范围是,25抛物线y24px (p0)的焦点为F,P为其上的一点,O为坐标原点,若OPF为等腰三角形,则这样的点P的个数为()A2 B3 C4 D6答案C解析当|PO|PF|时,点P在线段OF的中垂线上,此时,点P的位置有两个;当|OP|OF|时,点P的位置也有两个;对|FO|FP|的情形,点P不存在事实上,F(p,0),若设P(x,y),则|FO|p,|FP|,若p,则有x22pxy20,又y24px,x22px0,解得x0或x2p,当x0时,不构成三角形当x2p(p0)时,与点P在抛物线上矛盾符合要求的点P一共有4个6在等比数列an中,已知a3,S3,则a1_.答案或6解析当q1时,a1a2a3,S33a1,显然成立;当q1时,由题意,得所以由,得3,即2q2q10,所以q或q1(舍去)当q时,a16.综上可知,a1或a16.7已知函数f(x)ax33x1对于x1,1总有f(x)0成立,则a_.答案4解析若x0,则不论a取何值,f(x)0显然成立;当x0即x(0,1时,f(x)ax33x10可化为a.设g(x),则g(x),所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)maxg4,从而a4;当x0,g(x)在区间1,0)上单调递增,因此g(x)ming(1)4,从而a4,综上得a4.8(2014浙江)若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是_答案6解析输入n50,由于i1,S0,所以S2011,i2,此时不满足S50;当i2时,S2124,i3,此时不满足S50;当i3时,S24311,i4,此时不满足S50;当i4时,S211426,i5,此时不满足S50;当i5时,S226557,i6,此时满足S50,因此输出i6.9已知抛物线y22px(p0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)以M为圆心,MB为半径作圆M,当K(m,0)是x轴上一动点时,讨论直线AK与圆M的位置关系解(1)抛物线y22px的准线为x,由题意得45,所以p2,所以抛物线的方程为y24x.(2)由题意知,圆M的圆心为点(0,2),半径为2.当m4时,直线AK的方程为x4,此时,直线AK与圆M相离;当m4时,由(1)知A(4,4),则直线AK的方程为:y(xm),即4x(4m)y4m0,圆心M(0,2)到直线AK的距离d,令d2,解得m1.所以,当m1时,直线AK与圆M相离;当m1时,直线AK与圆M相切;当m0)若a0,则f(x)0,f(x)有单调递增区间0,)若a0,令f(x)0,得x,当0x时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理现场管理标准化作业指南
- 建筑工程施工阶段验收要点总结
- 智慧养老设备技术及应用案例
- 建筑企业财务管理与成本控制总结
- 2025航空维修保养行业市场分析及发展前景研究报告
- 2025航空旅游衍生品市场开发及品牌营销策略研究报告
- 2025航空旅游市场供应链重构与在线预订平台战略研究报告前景预测及投资
- 2025航空客运行业市场竞争态势分析及投资运维规划研究报告
- 2025航空客货运输行业市场供需分析投资环境风险评估合理规划科学发展报告
- 2025航空可燃冰行业市场供需分析投资环境难民规划可行性研究
- 涉密信息系统安全管理规范
- 2025四川资阳现代农业发展集团有限公司招聘1人笔试历年参考题库附带答案详解
- 2026中国人民银行所属企业网联清算公司社会招聘历年真题汇编带答案解析
- 2025地球小博士知识竞赛试题附答案
- 2025新业态劳动争议审判案件白皮书-
- 精神病人接触技巧
- 红楼梦林黛玉葬花课件
- 政务颁奖礼仪培训
- YY/T 0648-2025测量、控制和实验室用电气设备的安全要求第2-101部分:体外诊断(IVD)医用设备的专用要求
- 2025年国家开放大学《水利水电建筑工程》期末考试复习题库及答案解析
- 现代设计史课程考试指导资料
评论
0/150
提交评论