免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若,则 (2)若,则2、基本不等式一般形式(均值不等式)若,则3、基本不等式的两个重要变形(1)若,则(2)若,则总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若,则 (当且仅当时取“=”)(2)若,则 (当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)(4)若,则(5)若,则特别说明:以上不等式中,当且仅当时取“=”6、柯西不等式 (1)若,则(2)若,则有:(3)设是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设均为正数,证明不等式:2、已知为两两不相等的实数,求证:3、已知,求证:4、 已知,且,求证:5、 已知,且,求证:6、(2013年新课标卷数学(理)选修45:不等式选讲设均为正数,且,证明:(); ().7、(2013年江苏卷(数学)选修45:不等式选讲已知,求证:题型二:利用不等式求函数值域1、求下列函数的值域(1) (2)(3) (4)题型三:利用不等式求最值 (一)(凑项) 1、已知,求函数的最小值;变式1:已知,求函数的最小值;变式2:已知,求函数的最大值;练习:1、已知,求函数的最小值; 2、已知,求函数的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求的最大值;变式1:当时,求的最大值;变式2:设,求函数的最大值。2、若,求的最大值;变式:若,求的最大值;3、求函数的最大值; (提示:平方,利用基本不等式)变式:求函数的最大值;题型五:巧用“1”的代换求最值问题1、已知,求的最小值;法一:法二:变式1:已知,求的最小值;变式2:已知,求的最小值;变式3:已知,且,求的最小值。变式4:已知,且,求的最小值;变式5:(1)若且,求的最小值;(2)若且,求的最小值;变式6:已知正项等比数列满足:,若存在两项,使得,求的最小值;题型六:分离换元法求最值(了解)1、求函数的值域;变式:求函数的值域;2、求函数的最大值;(提示:换元法)变式:求函数的最大值;题型七:基本不等式的综合应用1、已知,求的最小值2、(2009天津)已知,求的最小值;变式1:(2010四川)如果,求关于的表达式的最小值;变式2:(2012湖北武汉诊断)已知,当时,函数的图像恒过定点,若点在直线上,求的最小值;3、已知,求最小值;变式1:已知,满足,求范围;变式2:(2010山东)已知,求最大值;(提示:通分或三角换元)变式3:(2011浙江)已知,求最大值;4、(2013年山东(理)设正实数满足,则当取得最大值时,的最大值为( )()A B C D(提示:代入换元,利用基本不等式以及函数求最值)变式:设是正数,满足,求的最小值;题型八:利用基本不等式求参数范围1、(2012沈阳检测)已知,且恒成立,求正实数的最小值;2、已知且恒成立,如果,求的最大值;(参考:4)(提示:分离参数,换元法)变式:已知满则,若恒成立,求的取值范围;题型九:利用柯西不等式求最值1、二维柯西不等式 若,则2、二维形式的柯西不等式的变式3、二维形式的柯西不等式的向量形式4、三维柯西不等式若,则有:5、一般维柯西不等式设是两组实数,则有:题型分析题型一:利用柯西不等式一般形式求最值1、设,若,则的最小值为时, 析: 最小值为此时 ,2、设,求的最小值,并求此时之值。:3、设,求之最小值为 ,此时 (析:)4、(2013年湖南卷(理)已知则的最小值是 ()5、(2013年湖北卷(理)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中地理教学反思
- 初中数学总知识点
- 初中道德与法治七年级上册《第1课 新生活 新面貌》《第2课 新自我 新期待》等(同步训练)
- 冬季安全隐患排查汇报(34篇)
- 房地产市场供应链分析
- 初三学习计划
- 临床路径虚拟仿真系统的维护与升级
- 如何在产品设计中实现全生命周期管理
- 企业财务共享服务中心的应用及优化研究-以华为公司为例
- 临床路径模拟教学对内科医师诊断准确率的提升研究
- 压铸模具开发流程
- 《职业教育学》课件-第6章 职业教育课程
- 2025年2月兽医检验练习题库与参考答案解析
- 旅游服务质量管理制度
- 2025-2030年中国过碳酸钠项目可行性研究报告
- 球馆合作协议书合同
- 海洋岩土工程课件
- 委托接送子女上下学服务合同协议书范本模板5篇
- 2025年团的基础知识测试模拟100题及答案
- 护理压疮不良事件分析
- 慢性阻塞性肺疾病患者随访服务记录表
评论
0/150
提交评论