




已阅读5页,还剩41页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二元一次方程组的应用总结第一篇:二元一次方程组的应用典型习题总结 第五章 实际问题与二元一次方程组经典例题 知识要点梳理 列方程组解应用题中常用的基本等量关系 1.行程问题: (1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差开始时两者相距的路程; ; (2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和总路程。 (3)航行问题:船在静水中的速度水速船的顺水速度; 船在静水中的速度水速船的逆水速度; 顺水速度逆水速度2水速。 注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。 2工程问题:工作效率工作时间=工作量. 3商品销售利润问题: (1)利润售价成本(进价);(2);(3)利润成本(进价)利润率; (4)标价成本(进价)(1利润率);(5)实际售价标价打折率; 打几折就是按标价的十分之几或百分之几十销售。(例如八折就是按标价的十分之八即五分之四或者百分之八十) 4储蓄问题: 利息本金利率期数 本息和本金利息本金本金利率期数本金 (1利率期数) 利息税利息利息税率本金利率期数利息税率。 税后利息利息 (1利息税率) 。 5配套问题: 解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。 6增长率问题: 解这类问题的基本等量关系式是:原量(1增长率)增长后的量;二元一次方程组的应用总结 原量(1减少率)减少后的量. 7和差倍分问题: 解这类问题的基本等量关系是:较大量较小量多余量,总量倍数倍量. 8数字问题: 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时, 奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字 9优化方案问题: 在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。 注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。 经典例题透析 类型一:列二元一次方程组解决行程问题 1甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米? 举一反三: 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。 类型二:列二元一次方程组解决工程问题 2一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少? 举一反三: 【变式3】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由. 类型三:列二元一次方程组解决商品销售利润问题二元一次方程组的应用总结 3有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元? 举一反三: 【变式4 (注:获利 = 售价 进价) 求该商场购进A、B两种商品各多少件; 类型四:列二元一次方程组解决银行储蓄问题 4小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25的教育储蓄,另一种是年利率为2.25的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税利息金额20%,教育储蓄没有利息所得税) 举一反三: 【变式5】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额20%) 【变式6】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元? 类型五:列二元一次方程组解决生产中的配套问题 5某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套? 举一反三: 【变式7】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 【变式8】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。 【变式9】一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300 条。现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌? 类型六:列二元一次方程组解决增长率问题 6. 某工厂去年的利润(总产值总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元? 【变式10】某城市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市的城镇人口与农村人口。 类型七:列二元一次方程组解决和差倍分问题 7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶? 举一反三: 【变式11】 (2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议号召个人、社区、企业和政府在每年3月最后一个星期六20时30分21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动 类型八:列二元一次方程组解决数字问题第二篇:二元一次方程组应用题_分类总结 二元一次方程组应用探索 二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下: 一、数字问题 例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数 分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示: 解方程组0 +y=x+1x0+x=1x01yx=1,得,因此,y=4二元一次方程组的应用总结 所求的两位数是14 点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之 二、利润问题 例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少? 分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10. 0.9x-y=20%yx=200解方程组,解得, 0.8x-y=10y=150 因此,此商品定价为200元 点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价利润率(盈利百分数)特别注意“利润”和“利润率”是不同的两个概念 三、配套问题 例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母 配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套? 分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的 2=每天生产的螺母数1因此,设安排人生产螺栓,人生螺栓与螺母应满足关系式:每天生产的螺栓数 产螺母,则每天可生产螺栓25个,螺母20个,依题意,得 x+y=120x=20,解之,得 50x2=20y1y=100 故应安排20人生产螺栓,100人生产螺母 点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是: (1)“二合一”问题:如果件甲产品和件乙产品配成一套,那么甲产品数的倍等于乙产品数的倍,即甲产品数乙产品数; =ab (2)“三合一”问题:如果甲产品件,乙产品件,丙产品件配成一套,那么各种产品数应满足的相等关系式是:甲产品数乙产品数丙产品数 =abc 四、行程问题 例4 在某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上问巡逻车和犯罪团伙的车的速度各是多少? 【研析】设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则 x-y=40x=803(x-y)=120,整理,得,解得, x+y=120y=40x+y=120 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时 点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在: “相向而遇”时,两者所走的路程之和等于它们原来的距离; “同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离 五、货运问题 典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少 吨? 分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”设甲种货物装x吨,乙种货物装y吨,则 x+y=300x+y=300x=150,整理,得,解得, 6x+2y=12003x+y=600y=150 因此,甲、乙两重货物应各装150吨 点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等 六、工程问题 例6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的4;现在工厂改进了人员5 组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天? 分析:设订做的工作服是x套,要求的期限是y天,依题意,得 4150y=xx=33755. ,解得y=18200(y-1)=x+25 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间工作效率”以及它们的变式“工作时间=工作量工作效率,工作效率=工作量工作时间”其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量第三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 硬件形式化方法-洞察及研究
- 肥儿散干预机制解析-洞察及研究
- 中学生应当具备的感恩品质
- 个人账户开户手续
- 改善血液循环的按摩规范
- 北京地区可吸入颗粒物污染特征与边界层气象因子的深度剖析
- 分数阶变分PDE:开启图像建模与去噪算法的新篇章
- WiMAX无线网络安全接入技术:原理、挑战与应对策略研究
- 智能电网规划设计-洞察及研究
- 智能农业气象信息服务-洞察及研究
- 2025中国农业科学院棉花研究所第二批招聘7人备考考试题库附答案解析
- 部编版2025-2026学年三年级上册语文期中测试情境卷A卷(含答案)
- 做更好的自己课件-2025-2026学年统编版道德与法治七年级上册
- 2023年贵州贵州贵安发展集团有限公司招聘考试真题及答案详解(夺冠)
- 移动照明车夜间施工租赁协议
- 重庆西南大学附中2025-2026学年九年级上学期开学考试语文试题
- 2025年大宗商品贸易业务流程优化计划
- 情感表达+课件+2025-2026学年人教版(2024)初中美术七年级上册
- 借名购车协议贷款协议书
- 2025年小升初数学考试试题(附答案)
- 2025年6月四川省高中学业水平合格性考试地理试题(解析版)
评论
0/150
提交评论