




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三、三角函数(一)填空题1、(2008江苏卷1)的最小正周期为,其中,则= 【解析】本小题考查三角函数的周期公式.2、(2009江苏卷4)函数(为常数,)在闭区间上的图象如图所示,则= . 【解析】 考查三角函数的周期知识。 ,所以3、(2010江苏卷10)定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_。【解析】考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为4、(2010江苏卷13)在锐角三角形ABC,A、B、C的对边分别为a、b、c,则=_。【解析】考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。当A=B或a=b时满足题意,此时有:,= 4。(方法二),5、(2011江苏卷7)已知 则的值为_.解析】.本题主要考查三角函数的概念,同角三角函数的基本关系式,正弦余弦函数的诱导公式,两角和与差的正弦余弦正切,二倍角的正弦余弦正切及其运用,中档题.6、(2011江苏卷9)函数是常数,的部分图象如图所示,则【解析】由图可知: 由图知:本题主要考查正弦余弦正切函数的图像与性质,的图像与性质以及诱导公式,数形结合思想,中档题.7(2013江苏卷1)函数的最小正周期为 。答案:18(2013江苏卷11) 设为锐角,若,则的值为 【解析】根据,因为,所以 ,因为.【点评】重点考查两角和与差的三角公式、角的灵活拆分、二倍角公式的运用.在求解三角函数值时,要注意角的取值情况,切勿出现增根情况.本题属于中档题,运算量较大,难度稍高.(二)解答题1、(2008江苏卷15)如图,在平面直角坐标系中,以轴为始边做两个锐角,,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为()求tan()的值;()求的值【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式由条件的,因为,为锐角,所以=因此()tan()= () ,所以为锐角,=2、(2009江苏卷15)(本小题满分14分) 设向量 (1)若与垂直,求的值; (2)求的最大值; (3)若,求证:. 【解析】 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。满分14分。3、(2010江苏卷17)(本小题满分14分)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角ABE=,ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?【解析】本题主要考查解三角形的知识、两角差的正切及不等式的应用。(1),同理:,。 ADAB=DB,故得,解得:。因此,算出的电视塔的高度H是124m。(2)由题设知,得,(当且仅当时,取等号)故当时,最大。因为,则,所以当时,-最大。故所求的是m。4、(2010江苏卷23)(本小题满分10分)已知ABC的三边长都是有理数。(1) 求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数。【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。(方法一)(1)证明:设三边长分别为,是有理数,是有理数,分母为正有理数,又有理数集对于除法的具有封闭性,必为有理数,cosA是有理数。(2)当时,显然cosA是有理数;当时,因为cosA是有理数, 也是有理数;假设当时,结论成立,即coskA、均是有理数。当时,解得:cosA,均是有理数,是有理数,是有理数。 即当时,结论成立。综上所述,对于任意正整数n,cosnA是有理数。(方法二)证明:(1)AB、BC、AC为有理数及余弦定理知有理数。(2)用数学归纳法证明cosnA和都是有理数。当时,由(1)知是有理数,从而有也是有理数。假设当时,和都是有理数。当时,由,及和归纳假设,知和都是有理数。即当时,结论成立。综合、可知,对任意正整数n,cosnA是有理数。5、(2011江苏卷15)在ABC中,角A、B、C所对应的边为(1)若 求A的值;(2)若,求的值.【解析】本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力。满分14分.解:(1),(2)由故ABC是直角三角形,且.6、(2012江苏卷15). (本小题满分14分)在中,已知(1)求证:;(2)若求A的值【点评】本题主要考查向量的数量积的定义与数量积运算、两角和与差的三角公式、三角恒等变形以及向量共线成立的条件本题综合性较强,转化思想在解题中灵活运用,注意两角和与差的三角公式的运用,考查分析问题和解决问题的能力,从今年的高考命题趋势看,几乎年年都命制该类型的试题,因此平时练习时加强该题型的训练.本题属于中档题,难度适中.7、(2013江苏卷18).18本小题满分16分。如图,游客从某旅游景区的景点处下山至处有两种路径。一种是从沿直线步行到,另一种是先从沿索道乘缆车到,然后从沿直线步行到。现有甲乙两位游客从处下山,甲沿匀速步行,速度为。在甲出发后,乙从乘缆车到,在处停留后,再从匀速步行到。假设缆车匀速直线运动的速度为,山路长为,经测量,。(1)求索道的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?CBA18解:(1), 根据得(2)设乙出发t分钟后,甲乙距离为d,则即时,即乙出发分钟后,乙在缆车上与甲的距离最短。(3)由正弦定理得(m)乙从B出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C设乙的步行速度为V ,则为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在范围内法二:解:(1)如图作BDCA于点D,设BD20k,则DC25k,AD48k,AB52k,由AC63k1260m,知:AB52k1040m(2)设乙出发x分钟后到达点M,此时甲到达N点,如图所示则:AM130x,AN50(x2),由余弦定理得:MN2AM2AN22 AMANcosA7400 x214000 x10000,其中0x8,当x(min)时,MN最小,此时乙在缆车上与甲的距离最短(3)由(1)知:BC500m,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山安全设备监测检修工技能操作考核试卷及答案
- 化工工艺技术员三级安全教育(公司级)考核试卷及答案
- 玻璃制品冷加工工设备调试考核试卷及答案
- 2025年混凝土证考试试题及答案
- 安徽美术色彩题库及答案
- 稻草人阅读测试卷及答案
- 煤层气液化工协同考核试卷及答案
- 光纤光缆制造工培训效果评估考核试卷及答案
- 温差电电池制造工会议决议执行考核试卷及答案
- 工业炉及电炉电气控制装调工能源管理体系执行考核试卷及答案
- HY/T 0404-2024潮流能、波浪能发电装置海试过程控制规范
- JGJ-T+141-2017通风管道技术规程
- 设备维护服务方案(2篇)
- 基本乐理(师范教育专业)全套教学课件
- 医院检验科实验室生物安全程序文件SOP
- 手术前术前准备未执行的应急预案
- JJG 270-2008血压计和血压表
- 《解剖学基础》课件-上肢骨及其连接
- T-CARM 002-2023 康复医院建设标准
- 轻质燃料油安全技术说明书样本
- 毕业设计(论文)-水果自动分拣机设计
评论
0/150
提交评论