数学北师大版九年级上册矩形的性质和判定(课时1).docx_第1页
数学北师大版九年级上册矩形的性质和判定(课时1).docx_第2页
数学北师大版九年级上册矩形的性质和判定(课时1).docx_第3页
数学北师大版九年级上册矩形的性质和判定(课时1).docx_第4页
数学北师大版九年级上册矩形的性质和判定(课时1).docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

麻栗坡县铁厂中学电子教案学期:2016年秋季学期 年级: 九年级 学科: 数学 执教教师: 吴贤勇 课 题第一章特殊平行四边形 1.2矩形的性质和判定 (课时1)教学目标1.掌握矩形的的定义,理解矩形与平行四边形的关系;2.理解并掌握矩形的性质定理,会用矩形的性质定理进行推导证明;3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力。教学重点掌握矩形的的定义,理解矩形与平行四边形的关系,理解并掌握矩形的性质定理教学难点会用矩形的性质定理进行推导证明教法与学法合作探究、引导推理教学准备复习平行四边形的性质,矩形纸片,数学课件教学课时1课时教学过程本节课设计了七个教学环节:第一环节:创设情景,导入新课;第二环节:分组讨论、探求新知;第三环节:层层递进,推理验证;第四环节:乘胜追击,完善性质;第五环节:建构新知,发展问题;第六环节:合作交流,解决问题;第七环节:反思交流,反馈提高。第一环节:创设情景,导入新课活动内容:1、平行四边形具有哪些性质?2、探究矩形的定义。利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,让学生注意观察。在演示过程中让学生思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?不变:对边仍保持相等,对边仍分别平行,所以仍然是平行四边形变:角的大小(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。(矩形)1、矩形的定义:有一个内角是直角的平行四边形是矩形活动目的:从学生的已有的知识出发,通过教具演示,让学生经历了矩形概念的探究过程,自然而然地形成矩形的概念第二环节:分组讨论,探究新知活动内容:1. 既然矩形是平行四边形,那么它具有平行四边形的哪些性质?在同学回答的基础上进行归纳:性质类别边角对角线对称性矩形对边平行且相等对角相等对角线互相平分中心对称图形 2.但矩形是特殊的平行四边形,它还具有一些特殊性质。下面我们来进一步研究矩形的其他性质。(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;(2)根据测量的结果,猜想结论。当矩形的大小不断变化时,发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?教师在学生口答的基础上,引导学生得出(板书):矩形的性质定理1: 矩形的四个角都是直角.矩形的性质定理2: 矩形的对角线相等.第三环节:层层递进,推理论证活动内容:提问:怎样证明你的猜想?(教师写出定理1、2的已知、求证,请同学分析思路写出证明过程)订正完毕后,请同学说出性质的推理形式,教师板书。已知:如图,四边形ABCD是矩形,ABC=90对角线AC与DB相交于点O。求证:(1)ABC=BCD=CDA=DAB=90 (2) AC=BD第四环节:乘胜追击,完善性质活动内容:问题1:请同学们拿出准备好的矩形纸片,折一折,观察并思考。矩形是不是中心对称图形? 如果是,那么对称中心是什么?矩形是不是轴对称图形?如果是,那么对称轴有几条?结论:矩形是轴对称图形,它有两条对称轴。问题2:请你总结一下矩形有哪些性质?归纳概括矩形的性质:从边来说,矩形的对边平行且相等;从角来说,矩形的四个角都是直角;从对角线来说,矩形的对角线相等且互相平分;从对称性来说,矩形既是轴对称图形,又是中心对称图形。问题3:矩形具有而一般平行四边形不具有的性质是 ( ) A.对角相等B.对边相等 C.对角线相等 D.对角线互相平分 活动目的:在前面学习了菱形的基础上学生已经知道怎么研究图形的对称性,在知道方法的条件下,学生完全可以通过自己的操作、观察、猜想,最终得到矩形的对称特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。第五环节:建构新知,发展问题活动内容:(1)提出问题:由矩形的四个角都是直角可得几个直角三角形?在直角三角形ABC中,你能找到它的一条特殊线段吗?你能发现它有什么特殊的性质吗?你能借助于矩形加以证明吗?(2)教师板书推论及推理语言: 定理:直角三角形斜边的中线等于斜边的一半.(3)练一练已知ABC是Rt,ABC=90,BD是斜边AC上的中线.(1)若BD=3,则AC_;(2)若C=30,AB5,则AC_,BD_. 活动目的:先从矩形的对角线相关性质推出直角三角形的性质,达到“学数学,用数学”的目的。再通过习题,让学生掌握“在直角三角形中斜边上的中线等于斜边的一半”这一性质,达到学以致用的目的,培养了学生的应用意识,AB=2.5cm,求矩形对角线的长。证明:四边形ABCD是矩形, AC=BD(矩形的对角线相等)OA=OC=AC,OB=OD=BD,OA=OD。AOD=120,ODA=OAD= (180-120)= 30。又DAB=90(矩形的四个角都是直角)BD=2AB=22.5=5.(1)下列说法错误的是( )A.矩形的对角线互相平分 B.矩形的对角线相等。C.有一个角是直角的四边形是矩形 D.有一个角是直角的平行四边形叫做矩形(2)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120,则矩形的边长分别为_。第七环节:反思交流,反馈提高活动内容:1.本节课你学到了什么?(1)矩形定义:有一个角是直角的平行四边形叫做矩形.(2)矩形的性质(3)直角三角形的性质(4)矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成两对全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角或等腰三角形的问题来解决。批 注提问学生,或者举手回答学生小组讨论,归纳矩形概念让学生观察从平行四边形到矩形的变化过程,从而自然得到矩形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论