2018年北京数学(文科)高考试题及答案(word版).docx_第1页
2018年北京数学(文科)高考试题及答案(word版).docx_第2页
2018年北京数学(文科)高考试题及答案(word版).docx_第3页
2018年北京数学(文科)高考试题及答案(word版).docx_第4页
2018年北京数学(文科)高考试题及答案(word版).docx_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案1A2D3B4B5D6C7C8D9 10 11(答案不唯一) 124133 14 15(共13分)解:(I)设等差数列的公差为,又,.(II)由(I)知,是以2为首项,2为公比的等比数列.16.(共13分)【解析】(),所以的最小正周期为.()由()知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.17.(共13分)()由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是2000.25=50,故所求概率为.()方法一:由题意知,样本中获得好评的电影部数是1400.4+500.2+3000.15+2000.25+8000.2+5100.1=56+10+45+50+160+51=372.故所求概率估计为.方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有1400.6+500.8+3000.85+2000.75+8000.8+5100.9=1628部.由古典概型概率公式得.()增加第五类电影的好评率, 减少第二类电影的好评率.18.(共14分)【解析】(),且为的中点,.底面为矩形,.()底面为矩形,.平面平面,平面.又,学科.网平面,平面平面.()如图,取中点,连接.分别为和的中点,且.四边形为矩形,且为的中点,且,四边形为平行四边形,.又平面,平面,平面.19. (13分)解:()因为,所以.,由题设知,即,解得.()方法一:由()得.若a1,则当时,;当时,.所以在x=1处取得极小值.若,则当时,所以.所以1不是的极小值点.综上可知,a的取值范围是.方法二:.(1)当a=0时,令得x=1.随x的变化情况如下表:x1+0极大值在x=1处取得极大值,不合题意.(2)当a0时,令得.当,即a=1时,在上单调递增,无极值,不合题意.当,即0a1时,随x的变化情况如下表:x+00+极大值极小值在x=1处取得极小值,即a1满足题意.(3)当a0时,令得.随x的变化情况如下表:x0+0极小值极大值在x=1处取得极大值,不合题意.综上所述,a的取值范围为.20(共14分)【解析】()由题意得,所以,又,所以,所以,所以椭圆的标准方程为()设直线的方程为,由消去可得,则,即,设,则,则,易得当时,故的最大值为()设,则 , ,又,所以可设,直线的方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论