已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学复习0912排列组合二项式定理教案知识点归纳 1、分类计数原理、步计数原理浅释分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事只有满足这个条件,才能直接用加法原理,否则不可以分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不能完成这件事,这些步骤,彼此间也不能有重复和遗漏如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理可以看出“分”是它们共同的特征,但是,分法却大不相同两个原理的公式是: , 强调知识的综合是近年的一种可取的现象两个原理,可以与物理中电路的串联、并联类比2、排列组合(1)排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)排列数的定义:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示。即()(3)组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合(4)组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数用符号表示(5)组合数的性质1:规定:;2:+ 3、排列组合解题方法:特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法科学分类法:对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生分组(堆)问题的六个模型:有序不等分;有序等分;有序局部等分;无序不等分;无序等分;无序局部等分;插空法:解决一些不相邻问题时,可以先排一些元素然后插入其余元素,捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法隔板法:n个 相同小球放入m(mn)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里(n-1个位置)选m-1个结点剪成m段(插入m1块隔板)有种错位法:编号为1至n的n个小球放入编号为1到 n的n个盒子里,每个盒子放一个小球要求小球与盒子的编号都不同,这种排列称为错位排列特别当n=2,3,4,5时的错位数各为1,2,9,442个、3个、4个元素的错位排列容易计算。关于5个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题:5个元素的全排列为:;剔除恰好有5对球盒同号1种、恰好有3对球盒同号(2个错位的) 种、恰好有2对球盒同号(3个错位的) 种、恰好有1对球盒同号(4个错位的) 种 120-1-44用此法可以逐步计算:6个、7个、8个、元素的错位排列问题二项式定理:1二项式定理:,2二项展开式的通项公式:3常数项、有理项和系数最大的项:求常数项、有理项和系数最大的项时,要根据通项公式讨论对的限制;求有理项时要注意到指数及项数的整数性 4二项式系数表(杨辉三角)展开式的二项式系数,当依次取时,二项式系数表,表中每行两端都是,除以外的每一个数都等于它肩上两个数的和5二项式系数的性质:展开式的二项式系数是,可以看成以为自变量的函数,定义域是(1)对称性:与首末两端“等距离”的两个二项式系数相等()(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值(3)各二项式系数和:,令,则 题型讲解 【例1】某城市在中心广场建造一个花圃,花圃分为6个部分(如下图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_种(以数字作答)解:记颜色为A、B、C、D四色,先安排1、2、3有A种不同的栽法,不妨设1、2、3已分别栽种A、B、C,则4、5、6栽种方法共5种,由以下树状图清晰可见 根据分步计数原理,不同栽种方法有N=A5=120【变式】如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色现有4种颜色可供选择,则不同的着色方法共有_种(以数字作答)解析:依次染、故有43231=72种答案:72【变式】(重庆卷16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答)【例2】用0,1,2,3,4,5这六个数字,(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位数的奇数?(4)可以组成多少个数字不重复的小于1000的自然数?(5)可以组成多少个大于3000,小于5421的数字不重复的四位数? 解(1)分三步:先选百位数字由于0不能作百位数,因此有5种选法; 十位数字有5种选法; 个位数字有4种选法由乘法原理知所求不同三位数共有554=100个(2)分三步:(1)百位数字有5种选法;(2)十位数字有6位选法;(3)个位数字有6种选法 所求三位数共有566=180个(3)分三步:先选个位数字,有3种选法;再选百位数字,有4种选法;选十位数字也是4 种选法,所求三位奇数共有344=48个(4)分三类:一位数,共有6个;两位数,共有55=25个;三位数共有554=100个 因此,比1000小的自然数共有6+25+100=131个(5)分四类:千位数字为3,4之一时,共有2543=120个;千位数字为5,百位数字为 0,1,2,3之一时,共有443=48个;千位数字是5,百位数字是4,十位数字为0,1之一 时,共有23=6个;还有5420也是满条件的1个 故所求自然数共120+48+6+1=175个正因数之和为31406=7440【变式】1、72的正约数(包括1和72)共有_个解析:72=23322m3n(0m3,0n2,m,nN)都是72的正约数m的取法有4种,n的取法有3种,由分步计数原理共34个。答案:122、从五个数字中每次取出三个不同的数字组成三位数,求所有三位数的和解:形如的数共有个,当这些数相加时,由“”产生的和是;形如的数也有个,当这些数相加时,由“”产生的和是;形如的数也有个,当这些数相加时,由“”产生的和应是这样在所有三位数的和中,由“”产生的和是同理由产生的和分别是,因此所有三位数的和是【例3】 分别求出符合下列要求的不同排法的种数(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)从6名运动员中选出4人参加4100米接力赛,甲不跑第一棒,乙不跑第四棒;(4)6人排成一排,甲、乙必须相邻;(5)6人排成一排,甲、乙不相邻;(6)6人排成一排,限定甲要排在乙的左边,乙要排在丙的左边(甲、乙、丙可以不相邻)解:(1)分排坐法与直排坐法一一对应,故排法种数为(2)甲不能排头尾,让受特殊限制的甲先选位置,有种选法,然后其他5人选,有种选法,故排法种数为(3)有两棒受限制,以第一棒的人选来分类:乙跑第一棒,其余棒次则不受限制,排法数为;乙不跑第一棒,则跑第一棒的人有种选法,第四棒除了乙和第一棒选定的人外,也有种选法,其余两棒次不受限制,故有种排法,由分类计数原理,共有种排法(4)将甲乙“捆绑”成“一个元”与其他4人一起作全排列共有种排法(5)甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的空挡插位,共有(或用6人的排列数减去问题(2)后排列数为)(6)三人的顺序定,实质是从6个位置中选出三个位置,然后排按规定的顺序放置这三人,其余3人在3个位置上全排列,故有排法种【变式】求不同的排法种数: (1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻解:(1)是“相邻”问题,用捆绑法解决:(2)是 “不相邻”问题,可以用插空法直接求解6男先排实位,再在7个空位中排2女,即用插孔法解决:。 另法:用捆绑与剔除相结合:(3)是“相邻”问题,应先捆绑后排位:(4)是 “不相邻”问题,可以用插空法直接求解: 【例4】四面体的顶点和各棱的中点共10个点。(1)设一个顶点为A,从其他9点中取3个点,使它们和点A在同一平面上,不同的取法有多少种?(2)在这10点中取4个不共面的点,不同的取法有多少种?(2)在这10点中取4个不共面的点,不同的取法有多少种?解:(1)如图,含顶点A的四面体的三个面上,除点A外都有5个点,从中取出3点必与点A共面,共有种取法含顶点A的棱有三条,每条棱上有3个点,它们与所对棱的中点共面,共有3种取法根据分类计数原理和点A共面三点取法共有种(2)取出的4点不共面比取出的4点共面的情形要复杂,故采用间接法:先不加限制任取4点(种取法)减去4点共面的取法取出的4点共面有三类:第一类:从四面体的同一个面上的6点取出4点共面,有种取法第二类:每条棱上的3个点与所对棱的中点共面,有6种取法第三类:从6条棱的中点取4个点共面,有3种取法根据分类计数原理4点共面取法共有故取4个点不共面的不同取法有(种)【变式】1、假设在100件产品中有3件是次品,从中任意抽取5件,求下列抽取方法各多少种?(1)没有次品;(2)恰有两件是次品;(3)至少有两件是次品解:(1)没有次品的抽法就是从97件正品中抽取5件的抽法,共有种(2)恰有2件是次品的抽法就是从97件正品中抽取3件,并从3件次品中抽2件的抽法,共有种(3)至少有2件次品的抽法,按次品件数来分有二类:第一类,从97件正品中抽取3件,并从3件次品中抽取2件,有种第二类,从97件正品中抽取2件,并将3件次品全部抽取,有种按分类计数原理有种2、在AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )第一类办法 从OA边上(不包括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有CC个;第二类办法 从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有CC个;第三类办法 从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有CC个 由加法原理共有N=CC+CC+CC个三角形 【变式】(浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是_(用数字作答)。【例5】将6本不同的书按下列分法,各有多少种不同的分法? 分给学生甲3 本,学生乙2本,学生丙1本; 分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本; 分给甲、乙、丙3人,每人2本; 分成3堆,一堆3 本,一堆2 本,一堆1 本; 分成3堆,每堆2 本 分给分给甲、乙、丙3人,其中一人4本,另两人每人1本; 分成3堆,其中一堆4本,另两堆每堆1本分析:分书过程中要分清:是均匀的还是非均匀的;是有序的还是无序的 特别是均匀的分法中要注意算法中的重复问题解:是指定人应得数量的非均匀问题:方法数为; (无序非等分)是没有指定人应得数量的非均匀问题:方法数为;(非等分,有序)是指定人应得数量的均匀问题:方法数为; ( 等分有序)是分堆的非均匀问题(与等价):方法数为; ( 非等分无序 )是分堆的均匀问题:方法数为; (等分无序)是部分均匀地分给人的问题:方法数为; ( 局部等分有序)是部分均匀地分堆的问题:方法数为 ( 局部等分无序)点评:以上问题归纳为分给人(有序)分成堆(无序)非均匀均匀部分均匀【变式】有6本不同的书,分给甲、乙、丙三个人 (1)如果每人得两本,有多少种不同的分法; (2)如果一个人得一本,一个人得2本,一个人得3本有多少种不同的分法; (3)如果把这6本书分成三堆,每堆两本有多少种不同分法 解:(1)假设甲先拿,则甲从6本不同的书中选取2本有种方法,不论甲取走的是哪两本书,乙再去取书时只能有种,此时剩下的两本书自然给丙,就只有种方法,由乘法原理得一共有种不同分法 (2)先假设甲得1本,乙得2本,丙得3本则有种法,一共有种 (3)把6本书分成三堆,每堆2本,与次序无关 所以一共有种不同分法【例6】 把9个相同小球放入其编号为1、2、3的三个箱子里,要求每个箱子放球的个数不小于其编号数,则不同的放球方法共有_种解:先给编号为2、3的三个箱子里分别放入1个、2个小球,有1种方法;再将剩余的6个小球串成一串,截为三段有种截断法,对应放到编号为1、2、3的三个箱子里因此,不同的放球方法有11010种点评: 隔板法:n个 相同小球放入m(mn)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪成m段(插入m1块隔板),有种方法【变式】 某校准备参加2005年高中数学联赛,把10个选手名额分配到高三年级的8 个教学班,每班至少一个名额,则不同的分配方案共有_ _种解 问题等价于把10个相同小球放入8个盒子里,每个盒子至少有一个小球的放法种数问题。用隔板法。有种。【例7】 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有_种解: 选取编号相同的两组球和盒子的方法有种,其余4组球与盒子需错位排列有9种放法,故所求方法有种二项式题型讲解【例8】 如果在(+)n的展开式中,前三项系数成等差数列,求展开式中的有理项解:展开式中前三项的系数分别为1,由题意得2=1+,得n=8设第r+1项为有理项,T=Cx,则r是4的倍数,所以r=0,4,8有理项为T1=x4,T5=x,T9=【变式】求展开所得的多项式中,系数为有理数的项数解:依题意:,为3和2的倍数,即为6的倍数,又,构成首项为0,公差为6,末项为96的等差数列,由得, 故系数为有理数的项共有17项【例9】(09四川)的展开式的常数项是 (用数字作答)w.w.w.k.s.5.u.c.o.【解析】,令,得 故展开式的常数项为【变式】求展开式中的系数解:令【例10】 求(1+x+x2+x3)(1x)7的展开式中x4的系数;求(1+x)3+(1+x)4+(1+x)50的展开式中x3的系数解:原式=(1x)7=(1x4)(1x)6,展开式中x4的系数为(1)4C1=14方法一:原式=展开式中x3的系数为C方法二:原展开式中x3的系数为C+C+C+C=C+C+C=C+C+C=C点评:把所给式子转化为二项展开式形式是解决此类问题的关键【变式】求展开式中的系数解法一:, 要使指数为1,只有才有可能,即,故的系数为解法二:由多项式的乘法法则,从以上5个括号中,一个括号内出现,其它四个括号出现常数项,则积为的一次项,此时系数为点评:此类问题通常有两个解法:化三项为二项,乘法法则及排列、组合知识的综合应用【例11】(09湖北)设,则 【解析】令得令时令时代入极限式可得,故选B【变式】已知,求解: 令时,有令时,有 【变式】【例12】 求展开式中系数最大的项解:设第项系数最大,则有,即又故系数最大项为练习:1.(09广东卷理)2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 A. 36种 B. 12种 C. 18种 D. 48种【解析】分两类:若小张或小赵入选,则有选法;若小张、小赵都入选,则有选法,共有选法36种,选A. 2、(09北京)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 ( ) A324 B328 C360 D648【解析】 首先应考虑“0”是特殊元素,当0排在末位时,有(个), 当0不排在末位时,有(个), 于是由分类计数原理,得符合题意的偶数共有(个).故选B.3、(09全国卷)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )(A)150种 (B)180种 (C)300种 (D)345种 解: 分两类(1) 甲组中选出一名女生有种选法; w.w.w.k.s.5.u.c.o.m (2) 乙组中选出一名女生有种选法.故共有345种选法.选D4、(09四川)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 60 B. 48 C. 42 D. 36【解析】解法一、从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;则男生甲必须在A、B之间(若甲在A、B两端。则为使A、B不相邻,只有把男生乙排在A、B之间,此时就不能满足男生甲不在两端的要求)此时共有6212种排法(A左B右和A右B左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12448种不同排法。解法二;同解法一,从3名女生中任取2人“捆”在一起记作A,(A共有种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有=24种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有12种排法第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法。此时共有12种排法 三类之和为241212485、(09辽宁)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )(A)70种 (B) 80种 (C) 100种 (D)140种 【解析】直接法:一男两女,有C51C4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026中国危险品标签行业区域市场差异化发展特征报告
- 城市绿化施工技术及维护管理规范
- 语言模型在客户服务中的应用
- 幼儿园营养果汁制作操作指南
- 感恩教育班会活动策划方案大全
- 教师年度工作总结与计划范文合集
- 新媒体运营推广方案与技巧
- 女工职业安全专项培训教材
- 部编版五年级语文缩句练习题
- 动物生理学考研重点练习题
- 2025年高压电工作业(特种作业)考试题库(带答案)
- 交换机路由器课件
- (北师大2024版)生物八上全册知识点(默写版+背诵版)
- 苏州实验中学2026届数学高二第一学期期末监测试题含解析
- 2025年合同能源管理节能改造工程合同能源管理合同
- 2025年山东省科创集团有限公司权属企业招聘(22人)笔试历年常考点试题专练附带答案详解试卷2套
- 共享展厅免责协议书
- 医疗器械质量文件审核批准管理制度
- 青海省西宁市大通县2025-2026学年高三上学期期中考试政治试卷
- 药品注册申报流程详解与实操指南
- 原材料基础知识培训计划课件
评论
0/150
提交评论