



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档佛山科学技术学院上 机 报 告课程名称 数学建模 上机项目 长方形椅子能在不平的地面上放稳吗? 专业班级 姓 名 学 号 一、问题提出椅子(四条腿的椅脚连线呈长方形)能在不平的地面上放稳吗?把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。二、问题分析 该模型看似与数学与数学无关,但我们可以用数学语言给予表述,并用数学工具来证实,经过分析,我们可以用一元变量表示椅子的位置,用的两个函数表示椅子四脚与地面的距离,进而把模型假设和椅脚同时着地的结论用简单、精确的数学语言表达出来,构成了这个实际问题的数学模型。三、模型假设对椅子和地面作出如下假设:(1)椅子四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线呈长方形。(2)地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。这个假设相当于给出了椅子能放稳的条件。(3)对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。四、模型建立(显示模型函数的构造过程)在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。首先,引入合适的变量来表示椅子位置的挪动。要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。于是,旋转角度这一变量就表示了椅子的位置。为此,在平面上建立直角坐标系来解决问题。如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系。椅子绕O点沿逆时针方向旋转角度后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角(0)表示出椅子绕点O旋转后的位置。其次,把椅脚是否着地用数学形式表示出来。我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。由于椅子在不同的位置是的函数,因此,椅脚与地面的竖直距离也是的函数。由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是的函数。而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的,其函数值至少有三个同时为0。因此,只需引入两个距离函数即可。考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180后,长方形位置不变,但A,C和B,D对换了因此,记A、B两脚与地面竖直距离之和为f(),C、D两脚与地面竖直距离之和为g(),其中0,从而将原问题数学化。数学模型:已知f()和g()是的非负连续函数,对任意,f()g()0,证明:存在00,使得f(0)g(0)0成立。 五、模型求解(显示模型的求解方法、步骤及运算程序、结果)如果f(0)g(0)0,那么结论成立。如果f(0)与g(0)不同时为零,不妨设f(0)0,g(0)0。此时,将长方形ABCD绕点O逆时针旋转角度后,点A,B分别与C,D互换,但长方形ABCD在地面上所处的位置不变,由此可知,f()g(0),g()f(0).而由f(0)0,g(0)0,得g()0, f()0。令h()f()g(),由f()和g()的连续性知h()也是连续函数。又h(0)f(0)g(0)0,h()f()g()0,,根据连续函数介值定理,必存在0(0,)使得h(0)0,即f(0)g(0) 。最后因为f(0)g(0)0,所以f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑幕墙施工资料管理方案
- 2025年危险化学品安全管理法规试题及答案
- 小学数学跨学科融合的教学实践
- 趣味识字在小学语文教学中的实践应用
- 公墓项目可行性研究报告
- 2025成都初一考试真题及答案
- 2025超聚变fcs考试真题及答案
- 2025年礼仪规范知识考核试题及答案
- 2025产品认证考试真题及答案
- 2025插班考试真题及答案大全
- 2025高考复习必背译林版高中英语全七册单词表
- 2025年人教新课标高一地理上册月考试卷
- 《临床心胸外科培训》课件
- 《超声诊断瓣膜病》课件
- 店长周工作总结数据报表模板
- “五育并举”视域下美育对工科大学生审美能力的提升研究
- 敦煌舞智慧树知到期末考试答案章节答案2024年兰州文理学院
- 机械工程学科研究前沿
- 涉外建设项目视频安防监控系统设计规范 DG-TJ08-2054-2013
- 中医外科 第十三章泌尿男科疾病概论
- Neo4j介绍及实现原理
评论
0/150
提交评论