免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 二次函数二次函数的图象与性质(第2课时)教学设计说明一、学生知识状况分析学生的知识技能基础:在此之前,学生已掌握一次函数和反比例函数的图像和性质,并刚刚学习了二次函数的基本概念,能利用描点法画抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质.学生活动经验基础:上一节课中学生已经学习了具体的二次函数y=x与y=-x的图象,对二次函数的定点、对称轴、开口方向等都有了基础的了解,但是对y=ax+c中的a和c对二次函数图象的影响并不了解.由于二次函数的图象比较直观,因此在分析两个或者多个二次函数的图象形状、开口方向、对称轴、顶点坐标时,也有了上一课时的活动基础.二、教学任务分析一、三维目标知识与技能1.能画二次函数和的图象,并能够比较它们与二次函数的图象的异同,理解与对二次函数图象的影响.2.能说出二次函数和图象的开口方向、对称轴、顶点坐标.过程与方法经历探索二次函数和的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.情感态度与价值观体会二次函数是某些实际问题的数学模型,由有趣的实际问题,使学生能积极参与数学学习活动,对数学有好奇心和求知欲.二、教学重难点a与c对二次函数图象的影响.三、教学过程分析一、复习回顾二次函数y=x、y=-x引导学生分别说出开口方向、顶点、对称轴、增减性二、在画有y=x的直角坐标系中画出y=2x的图像1、列表2、描点3、连线4、对比5、想一想, 与y=x、y=2x有什么异同点 三、结论:形如y=ax的二次函数图像,|a|越大,图像开口反而越小开口方向 对称轴 顶点 增减性 a0 向上 Y轴 (0,0) x0时,y随x增大而增大;x0时,y随x增大而减小 a0向下 Y轴 (0,0) x0时,y随x增大而减小;x0时,y随x增大而增大四、考虑二次函数y=2x+1的图像与二次函数y=2x的图像有什么异同?二次函数 y = 2 x + 1 的图象与二次函数 y = 2 x 的图象有什么关系?它是轴对称图形吗?它的开口方向、对称轴和顶点坐标分别是什么?你能通过平移画出y=2x-1的图像吗?说说你是怎么做的. 二次函数 y = 2 x,y = 2 x + 1,y = 2 x - 1 的图象都是抛物线,并且形状相同,只是位置不同将二次函数 y = 2 x 的图象向上平移 1 个单位,就得到函数 y = 2 x + 1 的图象;将二次函数 y = 2 x 的图象向下平移 1 个单位,就得到函数 y = 2 x - 1 的图象五、结论二次函数y=ax与y=ax+c的图像都是抛物线,开口方向和形状都相同 C0时,把y=ax向上平移c个单位得到y=ax+cC0时,把y=ax向下平移c个单位得到y=ax+c四、教学反思函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识.在教学过程中,先通过表格中数据的变化规律去理解函数的变化趋势,再让学生动手画图象,通过学生自己画的图象去印证发现的变化趋势,加深他们对函数图象的了解,也加深他们对函数性质的了解,更重要的是让学生参与到函数图象和性质的探索中去,这样学生才能真正理解并掌握它.其次合理、充分利用了多媒体教学的手段,利用powerpoint,几何画板等软件画出的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数y=ax及y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论