




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 3 2简单的线性规划问题 一 引入新课 1 某工厂用A B两种配件生产甲 乙两种产品 每生产一件甲产品使用4个A配件耗时1h 每生产一件乙产品使用4个B配件耗时2h 该厂最多可从配件厂获得16个A配件和12个B配件 按每天工作8h计算 该厂所有的日生产安排是什么 引入新课 1 某工厂用A B两种配件生产甲 乙两种产品 每生产一件甲产品使用4个A配件耗时1h 每生产一件乙产品使用4个B配件耗时2h 该厂最多可从配件厂获得16个A配件和12个B配件 按每天工作8h计算 该厂所有的日生产安排是什么 1 设甲 乙两种产品分别生产x y件 由已知条件可得二元一次不等式组 引入新课 1 某工厂用A B两种配件生产甲 乙两种产品 每生产一件甲产品使用4个A配件耗时1h 每生产一件乙产品使用4个B配件耗时2h 该厂最多可从配件厂获得16个A配件和12个B配件 按每天工作8h计算 该厂所有的日生产安排是什么 1 设甲 乙两种产品分别生产x y件 由已知条件可得二元一次不等式组 2 将上述不等式组表示成平面上的区域 引入新课 3 若生产一件甲产品获利2万元 生产一件乙产品获利3万元 采用哪种生产安排利润最大 引入新课 3 若生产一件甲产品获利2万元 生产一件乙产品获利3万元 采用哪种生产安排利润最大 设生产甲产品x乙产品y件时 工厂获得的利润为z 则z 2x 3y 上述问题就转化为 引入新课 3 若生产一件甲产品获利2万元 生产一件乙产品获利3万元 采用哪种生产安排利润最大 设生产甲产品x乙产品y件时 工厂获得的利润为z 则z 2x 3y 上述问题就转化为 当x y满足不等式 并且为非负整数时 z的最大值是多少 讲授新课 1 上述问题中 不等式组是一组对变量x y的约束条件 这组约束条件都是关于x y的一次不等式 所以又叫线性约束条件 讲授新课 1 上述问题中 不等式组是一组对变量x y的约束条件 这组约束条件都是关于x y的一次不等式 所以又叫线性约束条件 线性约束条件除了用一次不等式表示外 有时也用一次方程表示 讲授新课 2 欲求最大值或最小值的函数z 2x 3y叫做目标函数 讲授新课 2 欲求最大值或最小值的函数z 2x 3y叫做目标函数 由于z 2x y又是x y的一次解析式 所以又叫线性目标函数 讲授新课 3 一般地 求线性目标函数在线性约束条件下的最大值或最小值的问题 统称为线性规划问题 讲授新课 3 一般地 求线性目标函数在线性约束条件下的最大值或最小值的问题 统称为线性规划问题 4 满足线性约束条件的解 x y 叫做可行解 讲授新课 3 一般地 求线性目标函数在线性约束条件下的最大值或最小值的问题 统称为线性规划问题 4 满足线性约束条件的解 x y 叫做可行解 5 由所有可行解组成的集合叫做可行域 讲授新课 3 一般地 求线性目标函数在线性约束条件下的最大值或最小值的问题 统称为线性规划问题 4 满足线性约束条件的解 x y 叫做可行解 5 由所有可行解组成的集合叫做可行域 6 使目标函数取得最大值或最小值的可行解 它们都叫做这个问题的最优解 例题分析 例1 设z 2x y 式中变量x y满足下列条件 求z的最大值和最小值 讲授新课 4 2 2 4 6 y x O C A B 讲授新课 我们先画出不等式组 1 表示的平面区域 如图中 ABC内部且包括边界 点 0 0 不在这个三角形区域内 当x 0 y 0时 z 2x y 0 点 0 0 在直线l0 2x y 0上 4 2 2 4 6 y x O C A B 讲授新课 l0 4 2 2 4 6 y x O C A B 作一组和l0平行的直线l 2x y z z R 讲授新课 l0 4 2 2 4 6 y x O C A B 作一组和l0平行的直线l 2x y z z R 讲授新课 l0 可知 当l在l0的右上方时 直线l上的点 x y 满足2x y 0 即z 0 而且l往右平移时 z随之增大 在经过不等式组 1 表示的三角形区域内的点且平行于l的直线中 4 2 2 4 6 y x O C A B 作一组和l0平行的直线l 2x y z z R 讲授新课 l0 讲授新课 4 2 2 4 6 y x O C A B l0 以经过点A 5 2 的直线l2所对应的z最大 以经过点B 1 1 的直线l1所对应的z最小 讲授新课 以经过点A 5 2 的直线l2所对应的z最大 以经过点B 1 1 的直线l1所对应的z最小 4 2 2 4 6 y x O C A B l2 l0 讲授新课 以经过点A 5 2 的直线l2所对应的z最大 以经过点B 1 1 的直线l1所对应的z最小 4 2 2 4 6 y x O C A B l1 l2 l0 讲授新课 以经过点A 5 2 的直线l2所对应的z最大 以经过点B 1 1 的直线l1所对应的z最小 所以 zmax 2 5 2 12 zmin 2 1 1 3 4 2 2 4 6 y x O C A B l1 l2 讲授新课 练习1 解下列线性规划问题 求z 2x y的最大值和最小值 使式中的x y满足 约束条件 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 y x O 1 1 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 y x O 1 1 作出直线l0 2x y 0 再将直线平移 当l0平行线l1过B点时 可使z 2x y达到最小值 当l0平行线l2过C点时 可使z 2x y达到最大值 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 y x O 1 1 作出直线l0 2x y 0 再将直线平移 当l0平行线l1过B点时 可使z 2x y达到最小值 当l0平行线l2过C点时 可使z 2x y达到最大值 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 y x O 1 1 l0 作出直线l0 2x y 0 再将直线平移 当l0平行线l1过B点时 可使z 2x y达到最小值 当l0平行线l2过C点时 可使z 2x y达到最大值 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 y x O 1 1 l1 l0 作出直线l0 2x y 0 再将直线平移 当l0平行线l1过B点时 可使z 2x y达到最小值 当l0平行线l2过C点时 可使z 2x y达到最大值 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 y x O 1 1 l1 l0 l2 作出直线l0 2x y 0 再将直线平移 当l0平行线l1过B点时 可使z 2x y达到最小值 当l0平行线l2过C点时 可使z 2x y达到最大值 讲授新课 解 先作出可行域 见图中 ABC表示的区域 且求得 zmin 2 1 1 3 zmax 2 2 1 3 y x O 1 1 l1 l0 l2 讲授新课 解答线性规划问题的步骤 讲授新课 解答线性规划问题的步骤 第一步 根据约束条件画出可行域 讲授新课 解答线性规划问题的步骤 第一步 根据约束条件画出可行域 第二步 令z 0 画直线l0 讲授新课 解答线性规划问题的步骤 第一步 根据约束条件画出可行域 第二步 令z 0 画直线l0 第三步 观察 分析 平移直线l0 从而找到最优解 讲授新课 解答线性规划问题的步骤 第一步 根据约束条件画出可行域 第二步 令z 0 画直线l0 第三步 观察 分析 平移直线l0 从而找到最优解 第四步 求出目标函数的最大值或最小值 例2 求z x y的取值范围 使式中的x y满足约束条件 讲授新课 讲授新课 例3 求z x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邮政快递运营管理专业教学标准(高等职业教育专科)2025修订
- 2024-2025学年黑龙江龙东十校联盟高二下学期4月月考政治试题及答案
- 2025年中国家用光子脱毛机器行业市场全景分析及前景机遇研判报告
- 中国汽车排气喉行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 2025年中国新疆区物业管理行业市场全景监测及投资策略研究报告
- 2025年中国便利店行业现状分析及赢利性研究预测报告
- 2019-2025年中国猪肉深加工行业市场深度分析及发展前景预测报告
- 2025年中国经纬仪及视距仪市场供需格局及未来发展趋势报告
- 2025年中国刀具磨床行业市场深度分析及投资潜力预测报告
- 2025年 湖北武汉经济技术开发区招聘教师考试试题附答案
- 七年级英语下册 Unit 1 Can you play the guitar教学设计 (新版)人教新目标版
- 35千伏电力工程监理实施细则
- 以DeepSeek为代表的AI在能源行业的应用前景预测
- 物业电梯管理制度及规范
- 《钱学森》介绍课件
- 智慧树知到《中国近现代史纲要(哈尔滨工程大学)》2025章节测试附答案
- 单层泄爆屋面安装施工方案
- LY/T 3408-2024林下经济术语
- 果蔬类营养知识培训课件
- 2025年深圳市劳动合同保密协议官方模板
- 《动物药理》课件 第9章作用于血液循环系统的药物
评论
0/150
提交评论