




免费预览已结束,剩余82页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter3FourierSeriesRepresentationofPeriodicSignals 2012 2013 1 罗欣UESTC Contents ComplexExponentialsasEigenfunctionsofLTISystemsFourierSeriesrepresentationofperiodicsignals CT DT PropertiesofFourierSeriesApplications filtering 3 1Ahistoricalperspective JeanBaptisteJosephFourier bornin1768 inFrance 1807 periodicsignalcouldberepresentedbysinusoidalseries 1829 Dirichletprovidedpreciseconditions 1960s CooleyandTukeydiscoveredfastFouriertransform TwomainmostimportantcontributionofFourier Anyperiodicsignalscanberepresentedbyaseriesofharmonicallyrelatedsinusoids Anyaperiodicsignalscanberepresentedbyweightedintegralsofrelatedsinusoids FrancoisMarieCharlesFourier 1772 1837 Ideologist utopiansocialism 3 2TheResponseofLTISystemstoComplexExponentials Basicidea Torepresentsignalsaslinearcombinationofbasicsignals Thesetofbasicsignalscanbeusedtoconstructabroadandusefulclassofsignals TheresponseofanLTIsystemtoeachsignalshouldbesimple generalandinsightful LTI Previousfocus UnitsamplesandimpulsesFocusnow EigenfunctionsofallLTIsystemsEigenfunctionin samefunctionoutwitha gain Oneofchoices ThesetofcomplexexponentialsignalsSignalsofformestinCTSignalsofformzninDT 1 ContinuoustimeLTIsystem x t est y t H s est systemfunction eigenvalue eigenfunction 2 DiscretetimeLTIsystem x n zn y n H z zn systemfunction eigenvalue eigenfunction Example3 1 Wheninputsignal Hence Theimpulseresponseofthesystemis Then Then 3 InputasacombinationofComplexExponentials CT DT NowthetaskoffindingresponseofLTIsystemsistodetermineH sk orH nk FocusonrestrictedsetsofcomplexexponentialsCT s j purelyimaginaryi e signalsoftheformej tDT z ej i e signalsoftheformej n Note ForNow Howcanwerepresentasignalas sums ofcomplexexponentials CT DTFourierSeries PeriodicSignals andTransforms 3 3FourierSeriesRepresentationofContinuous timePeriodicSignals 1 GeneralForm 3 3 1LinearCombinationsofHarmonicallyRelatedComplexExponentials Thesetofharmonicallyrelatedcomplexexponentials Fundamentalperiod T commonperiod eigenfunction Alinearcombinationofharmonicallyrelatedcomplexexponentials Fourierseries periodicwithperiodT ak aretheFourier series coefficients k 0 constant directcurrentDCcomponent k 1firstharmonic fundamental components k 2secondharmoniccomponents k NtheNthharmoniccomponents eachharmoniccomponenthasdifferentamplitudeandfrequency spectrumofx t ak 0 First forsimpleperiodicsignalsconsistingofafewsinusoidalterms harmoniccomponentsk 1 3 harmoniccomponentsk 1 HowdowefindtheFouriercoefficients Example3 2 So wecanobtain where Euler srelation x1 t 1 2cos2 t x2 t cos4 t x3 t 2 3cos6 t x1 t x0 t x2 t x1 t x0 t x3 t x2 t x1 t x0 t 2 RepresentationforRealSignal Realperiodicsignal x t x t Therefore ak a kora k a k Let A B 3 3 2DeterminationoftheFSRepresentationofaCTPeriodicSignal Orthogonalfunctionset Here TdenotsintegeraloveranyintervaloflengthT oneperiod Determiningthecoefficientbyorthogonality Multiplytwosidesby Continuous timeFourierSeriespair Thesetofcomplexcoefficients ak areoftencalledspectralcoefficientsofx t theaveragevalueofx t Example3 3 because Example3 4 T1T1 fixed fixed ThespectralcharacteristicofaCTperiodicsignalx t DiscreteHarmonicConvergent Homework P250 3 23 3 Fouriermaintainedthat any periodicsignalcouldberepresentedbyaFourierseriesThetruthisthatFourierseriescanbeusedtorepresentanextremelylargeclassofperiodicsignalsThequestionisthatwhenaperiodicsignalx t doesinfacthaveaFourierseriesrepresentation 3 4ConvergenceoftheFourierSeries Approximationerror 1 Finiteseries Theenergyintheerroroveroneperiod oneusefulnotionforengineers If thentheseriesis convergent xN t x t 3 66 Tominimizetheenergyintheerror theparticularchoiceofthecoefficientsis Conclusion thetruncatedFourierseriesisthebestapproximationtox t usingonlyafinitenumeberofharmonicallyrelatedcomplexexponentialsunderMSEcriterion ak Afinite energyperiodicsignal Wedefine 2 Infiniteseries Conclusion ThisequationDoesnotimplythatthesignalx t anditsFourierseriesrepresentationareequalateveryvalueoft Whatdoesitsayisthatthereisnoenergyintheirdifferent Condition1 AbsolutelyIntegrable 3 Dirichletcondition 0 t 1 Condition2 Finitenumberofmaximaandminimaduringasingleperiod 0 t 1 Condition3 Finitenumberofdiscontinuity Dirichletconditionsaremetforthesignalswewillencounterintherealworld Then TheFourierseries x t atpointswherex t iscontinuous TheFourierseries midpoint atpointsofdiscontinuityConclusion Thetwosignalsdifferonlyatisolatedpoints andbehaveidenticallyunderconvolution HowtheFourierseriesconvergesforaperiodicsignalwithdiscontinuities 1898 AlbertMichelson anAmericanphysicist usedhisharmonicanalyzertoobservetruncatedFourierseriesapproximationforthesquarewave 3 Gibbsphenomenon JosiahGibbs AnAmericanmathematicalphysicistGivenoutamathematicalExplanation WhenN Anycontinuity say t t1 xN t1 x t1 Vicinityofdiscontinuity highfrequencyripplesandovershoot asNincreases theripplesbecomecompressedtowardthediscontinuity peakamplitudedoesnotseemtodecrease tendstobe9 Gibbs sconclusion 3 5PropertiesofCTFS 3 5 1Linearity T commonperiod 3 5 2TimeShifting 3 5 3TimeReversal 3 5 6ConjugationandConjugateSymmetry ifx t isreal x t x t thenak a k orak a kSymmetryproperties Re ak Re a k Im ak Im a k ak a k ak a k Note ifx t iseven thatisx t x t thenak a kifx t isodd thenak a kifx t isreal thenak a kifx t isrealandeven thenak a k akakisrealandeven ifx t isrealandodd thenak a k akakispurelyimaginaryandodd 3 5 4TimeScaling 3 5 5Multiplication ConvolutionSum T commonperiod 3 5 7Parseval sRelation 3 46 Table3 1 3 5 8Differentiation Example3 6 T1T1 Example3 7 theaveragevalueofx t Example3 8 Ifx t ak theng t ck PeriodicImpulsetrain important samplefunction Allcomponentshave 1 thesameamplitude 2 thesamephase Homework P251 3 53 83 22fig a 3 40 a d 3 43 3 6FourierSeriesRepresentationofDiscrete timePeriodicSignals 3 6 1LinearCombinationofHarmonicallyRelatedComplexExponentials Periodicsignalx n withperiodN x n x n N Discrete timecomplexexponentialorthogonalsignalset Propertyoforthogonalsignalset discrete timeFourierSeries ak Fourierseriescoefficients 3 6 2DeterminationoftheFourierSeriesRepresentationofPeriodicSignals Solution1 NequationsforNunknowns a0 a1 aN 1 Determinethecoefficientsakbyorthogonality Solution2 Discrete timeFourierseriespair ak theFouriercoefficientsorthespectralcoefficientsofx n ak ak N WeonlyuseNconsecutivevaluesofakinthesynthesisequation Synthesisequation Analysisequation Example1 sumofapairsinusoids periodicwithperiodN 16 Example3 12 and Supposetogetspectrumofx n Note theenvelopeshapeofakisas Note TheFourierSeriesrepresentationofadiscrete timeperiodicsignalisafiniteseries Therearenomathematicalissuesofconvergence ak thespectralcoefficientsofx n isperiodicwithN ThefeaturesoftheFSakofperiodicdiscrete timesignalDiscreteHarmonicPeriodic 3 7PropertiesofDiscrete TimeFourierSeries Seepage221Table3 2 CT DT Systemfunction Systemfunction Recall 3 8FourierSeriesandLTISystem FrequencyresponseofanLTIsystem CTFrequencyResponse DTFrequencyResponse s j z ej t CT DT FourierSeriesandLTISystem Example3 16 and Example3 2 calculatetheFourierSeriescoefficientsoftheoutputy t where Solution Accordingto Hence Where Homework P253 3 133 15P262 3 343 35 3 9Filtering filteringfrequency shapingfiltersfrequency selectivefilters 3 9 1Frequency shapingfilters Example1 Equalizer inhigh fidelityaudiosystems BychoiceofH j orH ej asafunctionof wecanshapethefrequencycompositionoftheoutput Foraudiosignals theamplitudeismuchmoreimportantthanthephase Demo Filteringeffectsonaudiosignals Example2 ImageFiltering Edgeenhancement 3 9 2Frequency selectivefilters Severaltypeoffilter 1 Lowpassfilter 2 Highpassfilter 3 Bandpassfilter threetypesofidealfilter Continuoustime LPF HPF BPF Symmetric Note Onlyshowamplitudehere H 1and H 0fortheidealfiltersinthepassbands noneedforthephaseplot c cutofffrequency c1 lowercutofffrequency c2 uppercutofffr
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初级灌区管理工考试题库及解析
- 2025年特岗教师招聘考试初中历史模拟试题及答案解析
- 2025年江西抚州赣东学院招聘考试笔试试卷【附答案】
- 2025年心理学前沿知识深度解析题库及答案
- 2025年物流管理专业期末考试预测题
- 2025年特岗教师招聘面试题解初中生物实验设计与操作技巧
- 2025年特岗教师招聘初中化学学科试题分析与应对策略
- 2025年燃气储运专业高频考点回顾与备考策略
- 电信诈骗案件办理课件
- 儿童画课件教学目标
- 教师职业技能提升培训教程
- 2025年版房屋租赁合同模板下载
- 2025年4月自考00840第二外语(日语)试题
- 2024年北京客运资格从业证考试内容
- 信息系统运维方案
- 2023年杭州市中小学教师教学能力水平考核
- 劳动关系协调员真题模拟汇编(共1142题)
- 数独课件完整版
- 摊铺机使用说明rp953e-903e操作手册
- 伸屈指肌腱断裂
- GB 6675.12-2014玩具安全第12部分:玩具滑板车
评论
0/150
提交评论