第3章+非稳态导热.ppt_第1页
第3章+非稳态导热.ppt_第2页
第3章+非稳态导热.ppt_第3页
第3章+非稳态导热.ppt_第4页
第3章+非稳态导热.ppt_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章非稳态热传导 3 1非稳态导热的基本概念 3 1 1非稳态导热过程及其特点物体的温度随时间而变化的导热过程为非稳态导热 自然界和工程上许多导热过程为非稳态 t f 例 冶金 热处理与热加工中工件被加热或冷却 锅炉 内燃机等装置起动 停机 变工况 自然环境温度 供暖或停暖过程中墙内与室内空气温度 2非稳态导热的分类 周期性非稳态导热 物体的温度随时间而作周期性的变化 非周期性非稳态导热 瞬态导热 物体的温度随时间不断地升高 加热过程 或降低 冷却过程 在经历相当长时间后 物体温度逐渐趋近于周围介质温度 最终达到热平衡 物体的温度随时间的推移逐渐趋近于恒定的值 着重讨论瞬态非稳态导热 非稳态导热过程中在热量传递方向上不同位置处的导热量是处处不同的 不同位置间导热量的差别用于 或来自 该两个位置间内能随时间的变化 这是区别与稳态导热的一个特点 对非稳态导热一般不能用热阻的方法来作问题的定量分析 3温度分布 4两个不同的阶段 依据温度变化的特点 可将加热或冷却过程分为二个阶段 非正规状况阶段 右侧面不参与换热 环境的热影响不断向物体内部扩展的过程 即物体 或系统 有部分区域受到初始温度分布控制的阶段 必须用无穷级数描述 二类非稳态导热的区别 瞬态导热存在着有区别的两个不同阶段 而周期性导热不存在 正规状况阶段 右侧面参与换热 当右侧面参与换热以后 物体中的温度分布不受初始温度的影响 主要取决于边界条件及物性 此时非稳态导热过程进入到正规状况阶段 环境的热影响已经扩展到整个物体内部 即物体 或系统 不再受到初始温度分布影响的阶段 可以用初等函数描述 两个不同的阶段 温度分布主要取决于边界条件及物性 温度分布主要受初始温度分布控制 导热过程的三个阶段 瞬态非稳态导热 正规状况阶段 非正规状况阶段 热量变化 1 板左侧导入的热流量 2 板右侧导出的热流量 非稳态导热过程中 在与热流量方向相垂直的不同截面上热流量不相等 原因 在热量传递的路径上 物体各处温度变化要积聚能量 非稳态导热问题的求解实质 在规定的初始条件及边界条件下求解导热微分方程式 是本章主要任务 3 1 2导热微分方程解的唯一性定律 三个不同坐标系下导热微分方程式 用矢量形式统一表示为 温度的拉普拉斯算子 初始条件的一般形式 简单特例f x y z t0 边界条件 着重讨论第三类边界条件 解的唯一性定理数学上可以证明 如果某一函数t x y z 满足方程 3 1a 3 1b 以及一定的初始和边界条件 则此函数就是这一特定导热问题的唯一解 本章所介绍的各种分析法都被认为是满足特定问题的唯一解 3 1 3第三类边界条件下Bi数对平板中温度分布的影响 在第三类边界条件下 确定非稳态导热物体中的温度变化特征与边界条件参数的关系 已知 平板厚2 平板导热系数 初温to 将其突然置于温度为t 的流体中冷却 表面传热系数h 试分析在以下三种情况平板中温度场的变化 问题的分析 如图所示 存在两个换热环节 流体与物体表面的对流换热 物体内部的导热 表面对流换热热阻1 h与导热热阻的相对大小对物体中非稳态导热的温度场的分布有重要影响 1 这时 由于表面对流换热热阻几乎可以忽略 因而过程一开始平板的表面温度就被冷却到 并随着时间的推移 整体地下降 逐渐趋近于 2 这时 平板内部导热热阻几乎可以忽略 因而任一时刻平板中各点的温度接近均匀 并随着时间的推移 整体地下降 逐渐趋近于 这时平板中不同时刻的温度分布介于上述两种极端情况之间 3 与的数值比较接近 由此可见 上述两个热阻的相对大小对于物体中非稳态导热的温度场的变化具有重要影响 为此 我们引入表征这两个热阻比值的无量纲数毕渥数 1 毕渥数的定义 毕渥数属特征数 准则数 2 Bi物理意义 固体内部单位导热面积上的导热热阻与单位表面积上的换热热阻之比 Bi的大小反映了物体在非稳态条件下内部温度场的分布规律 3 特征数 准则数 表征某一物理现象或过程特征的无量纲数 4 特征长度 是指特征数定义式中的几何尺度 毕渥数 3 2零维问题的分析法 集总参数法 定义 忽略物体内部导热热阻 认为物体温度均匀一致的分析方法 此时 温度分布只与时间有关 即 与空间位置无关 因此 也称为零维问题 3 2 1集总参数法温度场的分析解 一个集总参数系统 其体积为V 表面积为A 密度为 比热为c以及初始温度为t0 突然放入温度为t 换热系数为h的环境中 求物体温度随时间变化的依变关系 建立数学模型 利用两种方法 利用能量守恒热平衡关系为 内热能随时间的变化率 通过表面与外界交换的热流量 c 根据导热微分方程的一般形式进行简化 方法一 椐非稳态有内热源的导热微分方程 物体内部导热热阻很小 忽略不计 物体温度在同一瞬间各点温度基本相等 即t仅是 的一元函数 与坐标x y z无关 即 可视为广义热源 而且热交换的边界不是计算边界 零维无任何边界 界面上交换的热量应折算成整个物体的体积热源 即 物体被冷却 应为负值 适用于本问题的导热微分方程式 当物体被冷却时 t t 由能量守恒可知 方法二 适用于本问题的导热微分方程式 物体与环境的对流散热量 物体内能的减少量 方程式改写为 积分 过余温度比 其中的指数 温度呈指数分布 傅立叶数 应用集总参数法时 物体过余温度随时间的变化关系是一条负自然指数曲线 或者无因次温度的对数与时间的关系是一条负斜率直线 3 2 2导热量计算式 时间常数与傅立叶数 1 导热量计算 瞬态热流量 导热体在时间0 内传给流体的总热量 当物体被加热时 t t 计算式相同 方程中指数的量纲 2 时间常数 即与的量纲相同 上式表明 当传热时间等于时 物体的过余温度已经达到了初始过余温度的36 8 称为时间常数 也称弛豫时间 用表示 如果导热体的热容量 cV 小 换热条件好 hA大 那么单位时间所传递的热量大 导热体的温度变化快 时间常数 Vc hA 小 时间常数反映了系统处于一定的环境中所表现出来的传热动态特征 与其几何形状 密度及比热有关 还与环境的换热情况相关 可见 同一物质不同的形状其时间常数不同 同一物体在不同的环境下时间常数也是不相同 当物体冷却或加热过程所经历的时间等于其时间常数时 即 c 则 4 c 时 工程上认为 4 c时导热体已达到热平衡状态 BiVFoV 3物理意义 无量纲热阻 无量纲时间 Fo越大 热扰动就能越深入地传播到物体内部物体 各点地温度就越接近周围介质的温度 Fo物理意义 表征非稳态过程进行深度的无量纲时间 3 2 3集总参数系统的适用范围 如何去判定一个任意的系统是集总参数系统 特征长度的取值 特征长度 工程计算中 物体中各点过余温度的差别小于5 对厚为2 的无限大平板对半径为R的无限长圆柱对半径为R的球 是与物体几何形状有关的无量纲常数 对于一个复杂形体的形状修正系数时 可以将修正系数M取为1 3 即 例 将一个初始温度为20 直径为100mm的钢球投入1000 的加热炉中加热 表面传热系数为h 50W m2 K 已知钢球的密度为7790kg m3 比热容为470J kg K 导热系数为43 2W m K 试求钢球中心温度达到800 所需要的时间 解 首先判断能否用集总参数法求解 毕渥数为 可以用集总参数法求解 3 3典型一维物体非稳态导热的分析解 3 3 1三种几何形状物体的温度场分析解3 3 2非稳态导热正规状况阶段分析解的简化3 3 3非稳态导热正规状况阶段工程计算方法3 3 4分析解应用范围的推广 1 平板 厚度2 的无限大平壁 a为已知常数 0时温度为t0 突然把两侧介质温度降低为t 并保持不变 壁表面与介质之间的表面传热系数为h 两侧冷却情况相同 温度分布对称 中心为原点 导热微分方程 初始条件 边界条件 第三类 采用分离变量法求解 与Fo数 Bi数及 有关 可查表求部分Bi数下的 n值 n为超越方程的根 2 圆柱 半径为R的一实心圆柱 a为已知常数 初始温度为t0 初始瞬间把两侧介质温度降低为t 并保持不变 圆柱表面与流体之间的表面传热系数h为常数 与Fo数 Bi数及 有关 第一类贝塞尔函数查表P572附录14 3 球 半径为R的一实心球 a为已知常数 初始温度为t0 初始瞬间把两侧介质温度降低为t 并保持不变 圆柱表面与流体之间的表面传热系数h为常数 与Fo数 Bi数及 有关 平板 圆柱与球中的无量纲过余温度与Fo数 Bi数及无量纲距离 有关 3 3 2非稳态导热正规状况阶段分析解的简化 1 非稳态导热正规状况的物理概念和数学含义 物理概念 非周期性的非稳态导热过程在进行到一定深度后 初始条件对物体中无量纲温度分布的影响基本消失 温度分布主要取决与边界条件的影响 非稳态导热的这一阶段称为正规状况阶段 数学含义 取无穷级数第一项 以平板为例进行说明 特征值 n是Bi数的函数 在一定的Bi下 特征值 n随n的增加而迅速增长 当Bi 1时 n的前4个值 无穷级数第一项后各项随Fo数的增大而迅速减小 数值计算表明 Fo 0 2后 略去无穷级数中的第二项及以后各项所得的计算结果与按完整级数计算结果的偏差小于1 2 正规状况三个分析解的简化表达式 平板从初始时刻到热平衡所传递的热量 3 一段时间间隔内所传导的热量计算式 非稳态导热所能传递的最大热量 若令Q为内所传递热量 平均过余温度 热量计算式 三种几何形状物体的正规状况阶段温度场与导热量的计算式可统一为 当Fo 0 2时 可采用上述计算公式求得非稳态导热物体的温度场及交换的热量 也可采用简化的拟合公式和诺模图求得 3 3 3正规热状况的实用计算方法 1 近似拟合公式 式中常数a b c d见P128表3 2 对上述公式中的A B 1 J0可用下式拟合 问题 估算从冰箱中取出5 的鸡蛋放入95 的水中加热 鸡蛋中心温度达到75 所需时间 假设 把鸡蛋简化为d 4cm的圆球 鸡蛋中75 为水 其物性可按照水的值估计 物性 tm 5 75 2 40 0 635W mK a 15 3 10 8m2 s 2 图线法 诺模图 工程技术中 为便于计算 采用按分析解的级数第一项绘制的一些图线 叫诺模图 海斯勒图 诺模图中用以确定温度分布的图线 称海斯勒图 诺谟图 三个变量 因此 需要分开来画 以无限大平板为例 F0 0 2时 取其级数首项即可 为平板中心的过余温度 三个变量 需分开来画 与时间无关 只取决于边界条件 以平板为例进行分析 平板中心处过余温度 P130图3 8 P129图3 7 定义无量纲的热量 其中Q 为0 时间内传导的热量 内热能的改变量 为 至无穷时间内的总传导热量 物体内能改变总量 P130图3 9 如何利用线算图 a 对于由时间求温度的步骤为 计算Bi数 Fo数和x 从图3 7中查找 m 0和从图3 8中查找 m 计算出 最后求出温度t b 对于由温度求时间步骤为 计算Bi数 x 和 0 从图3 8中查找 m 计算 m 0然后从图3 7中查找Fo 再求出时间 c 平板吸收 或放出 的热量 可在计算Q0 Bi数 Fo数之后 从图3 9中Q Q0查找 再计算出 目前 随着计算技术的发展 直接应用分析解及简化拟合公式计算的方法受到重视 线算图法评述 优点 简洁方便 缺点 准确度有限 误差较大 解的应用范围 教材中的诺谟图及拟合函数仅适用恒温介质的第三类边界条件或第一类边界条件的加热及冷却过程 并且F0 0 2 无限长圆柱体和球体加热 冷却 过程分析 1 无限长圆柱 式中r0为无限长圆柱体的半径 类似有 和 P573附录16 2 球体 球体处理方法与无限大圆柱体完全相同 相应的线算图示于P575附录17之中 这里要注意的是特征尺寸R为球体的半径 r为球体的径向方向 Fo 0 2时 进入正规状况阶段 平壁内所有各点过余温度的对数都随时间按线性规律变化 变化曲线的斜率都相等 m 0随F0增大而减小 Fo 0 2时是瞬态温度变化的初始阶段 各点温度变化速率不同 2 Bi准则对温度分布的影响 Bi Bi h 表征了给定导热系统内的导热热阻与其和环境之间的换热热阻的对比关系 当Bi 时 意味着表面传热系数h 对流换热热阻趋于0 平壁的表面温度几乎从冷却过程一开始 就立刻降到流体温度t 当Bi 0时 意味着物体的热导率很大 导热热阻 0 Bi h 物体内的温度分布趋于均匀一致 可用集总参数法求解 求解非稳态导热问题的一般步骤 非稳态导热求解方法 1 先校核Bi是否满足集总参数法条件 若满足 则优先考虑集总参数法 若性质属于h或 未知 可先假设 然后校核 2 如不能用集总参数法 则尝试用诺谟图或近似公式 3 若上述方法都不行则采用数值解 4 确定温度分布 加热或冷却时间 热量 传热学HeatTransfer 3 4半无限大物体的非稳态导热 半无限大物体的概念仅适用于非稳态导热的初始阶段 即非正规状况阶段的研究 半无限大物体的概念 具有均匀初始温度t0的半无限大平板 在 0时刻 x 0侧突然受到热扰动 求物体内部的温度随时间变化 传热学HeatTransfer 3 4半无限大物体的非稳态导热 第一类边界条件 定义过余温度 误差函数 附录15 注意边界条件与厚度为2 无限大平板分析解的区别 传热学HeatTransfer 3 4半无限大物体的非稳态导热 第三类边界条件 第二类边界条件 三种边界条件下半无限大物体的非稳态导热分析解均为误差函数形式 传热学HeatTransfer 3 4半无限大物体的非稳态导热 误差函数特性 对于厚度为2 的平板 x 时刻以前的平板可视为半无限大物体 x处的温度等于初始温度t0 即半无限大的概念仅适用于惰性时间以内的非稳态导热初始阶段 惰性时间 传热学HeatTransfer 3 4半无限大物体的非稳态导热 半无限大物体 处于非稳态导热初始阶段 作半无限大物体处理 处于非稳态导热正规状况阶段 适用n 1情况下的分析解 适用集总参数法求解 传热学HeatTransfer 3 4半无限大物体的非稳态导热 物体中任意截面x的热流密度 物体表面的热流密度 x 0 0 时刻内的通过面积A的总热量 吸热系数 表示物体向与其接触的高温物体吸热的能力 本节对于初始阶段非稳态导热的讨论主要应用于物体加热或冷却的速率研究 传热学HeatTransfer 3 5简单几何形状物体多维非稳态导热的分析解 简单几何外形物体的无量纲温度场可由其几何上的相贯体的一维分析解相乘获得 无量纲过余温度 二维方柱 二维圆柱 三维立方体 传热学HeatTransfer 二维控制方程及定解条件 初始条件 第三类边界条件条件 绝热边界条件 3 5简单几何形状物体多维非稳态导热的分析解 二维无限长方柱体非稳态导热 柱体初始温度t0 周围流体温度t 表面换热系数h 传热学HeatTransfer 两个厚度分别为2 12 2无限大平板的控制方程及定解条件 解的唯一性定理 一定的控制方程和定解条件下只能得到唯一解 将一维问题的控制方程和定解条件分别代入二维控制方程和定解条件即可证明 3 5简单几何形状物体多维非稳态导热的分析解 传热学HeatTransfer 二维 三维非稳态导热的分析解 两 三个一维问题分析解的乘积 3 5简单几何形状物体多维非稳态导热的分析解 0 时间间隔多维非稳态导热的导热量 二维 三维 传热学HeatTransfer 二维 三维非稳态导热的分析解 两 三个一维问题分析解的乘积 求解步骤 将多维问题分解为相应定解条件下的几个一维问题 采用一维分析解 包

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论