



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
例4-7 用对偶单纯形法求解线性规划问题. Min z =5x1+3x s.t. -2 x1 + 3x6 3 x1 - 6 x4 Xj0(j=1,2)解: 将问题转化为 Max z = -5 x1 - 3 x s.t. 2 x1 - 3x+ x3 = -6 -3 x1 + 6 x+ x4-4 Xj0(j=1,2,3,4)其中,x3 ,x4 为松弛变量,可以作为初始基变量,单纯形表见表4-17. 表4-17 例4-7单纯形表Cj-6-3-40CBXBbX1X2X3X4迭代0次0X4-62-3100X5-4-36010-5-300CBXBbX1X2X3X4迭代1次-3X42-2/31-1/300X3-1610216-70-10在表4-17中,b=-160,而y0,故该问题无可行解.注意: 对偶单纯形法仍是求解原问题,它是适用于当原问题无可行基,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系,可以根据这些关系,从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1) 设原问题(p)为 Min z=CX s.t. 则标准型(LP)为 Max z=CX s.t. 其对偶线性规划(D)为 Max z=bTY s.t. 用对偶单纯形法求解(LP),得最优基B和最优单纯形表T(B)。对于(LP)来说,当j=n+i时,有Pj=-ei,cj=0从而,在最优单纯形表T(B)中,对于检验数,有(n+1,n+2n+m)=(cn+1,cn+2,cn+m)-CBB-1(Pn+1,Pn+2,Pn+m)=- CBB-1 (-I)于是,Y*=(n+1,n+2n+m)T 。可见,在(LP)的最优单纯形表中,剩余变量对应的检验数就是对偶问题的最优解。同时,在最优单纯形表T(B)中,由于剩余变量对应的系数所以 B-1 =(-y n+1,-y n+2-yn+m) 例4-8 求下列线性规划问题的对偶问题的最优解。 Min z =6x1+8x s.t. x1 + 2x20 3 x1 + 2x50 Xj0(j=1,2)解: 将问题转化为 Max z =-6x1-8x s.t. -x1 2x + x3=20 -3 x1 - 2x+ x4 =50 Xj0(j=1,2,3,4)用对偶单纯形法求解如表 表4-18 例4-8单纯形表Cj-6-800CBXBbX1X2X3X4迭代0次-8X45/201-3/41/4-6X515101/2-1/2-1100031在引入松弛变量化为标准型之后,约束等式两侧同乘-1,能够立即得到检验数全部非正的原规划基本解,可以直接建立初始对偶单纯形表进行求解,非常方便。 对于有些线性规划模型,如果在开始求解时不能很快使所有检验数非正,最好还是采用单纯形法求解。因为,这样可以免去为使检验数全部非正而作的许多工作。从这个意义上看,可以说,对偶单纯形法是单纯形法的一个补充。除此之外,在对线性规划进行灵敏度分析中有时也要用到对偶单纯形方法,可以简化计算。例4-9:求解线性规划问题: Min f = 2x1 + 3x2 + 4x3 S.t. x1 + 2x2 + x3 3 2x1 - x2 + x3 4 x1 , x2 , x3 0 标准化:Max z = - 2x1 - 3x2 - 4x3 s.t. -x1-2x2-x3+x4= -3 -2x1+x2-3x3+x5= -4 x1,x2,x3,x4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第2章 第2节 第1课时 冬季南北温差大夏季普遍高温(新说课稿)2025-2026学年八年级上册地理(人教版)
- Unit 10 Musical chairs说课稿小学英语新世纪英语三年级下册-新世纪英语
- 16 田忌赛马(教学设计)-统编版语文五年级下册
- 16.3 角的平分线说课稿初中数学冀教版2024八年级上册-冀教版2024
- 11 我是一张纸(教学设计)部编版道德与法治二年级下册
- 资产审计申请书
- 海事安全与保安培训课件
- 师大版九年级科学上第一章第一节第一课时质量守恒定律说课稿
- 退商户押金申请书
- 房产证遗失申请书
- 金属热处理工测试考核试卷及答案
- 食品安全宣传培训会课件
- GB/T 21415-2025体外诊断医疗器械建立校准品、正确度控制物质和人体样品赋值的计量溯源性要求
- 患者走失应急演练脚本(2篇)
- 安徽省2025年公需科目培训测验答案(科目一)
- 高中数学-斐波那契数列与黄金分割教学设计
- 数据驱动的教育决策
- 农作物植保员职业技能竞赛题库及答案
- T梁湿接缝及横隔梁施工方案
- (完整)易制毒化学品使用管理责任书
- 石群邱关源电路课件(第8至16单元)白底
评论
0/150
提交评论