




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二讲概率 随机变量及其分布列 主干知识整合 2 常见的离散型随机变量的分布 1 两点分布分布列为 其中0 p 1 2 二项分布在n次独立重复试验中 事件A发生的次数 是一个随机变量 3 离散型随机变量的期望与方差若离散型随机变量 的分布列为则称E x1p1 x2p2 xnpn 为 的数学期望 简称期望 D x1 E 2 p1 x2 E 2 p2 xn E 2 pn 叫做随机变量 的方差 高考热点讲练 一个袋中装有大小相同的10个球 其中红球8个 黑球2个 现从袋中有放回地取球 每次随机取1个 1 求连续取两次都是红球的概率 2 如果取出黑球 则取球终止 否则继续取球 直到取出黑球 求取球次数不超过3次的概率 变式训练1有两枚大小相同 质地均匀的正四面体玩具 每个玩具的各个面上分别写着数字1 2 3 5 同时投掷这两枚玩具一次 记m为两个朝下的面上的数字之和 1 求事件 m不小于6 的概率 2 m为奇数 的概率与 m为偶数 的概率是否相等 并给出说明 解 因为玩具的质地是均匀的 所以玩具各面朝下的可能性相等 出现的可能情况有 1 1 1 2 1 3 1 5 2 1 2 2 2 3 2 5 3 1 3 2 3 3 3 5 5 1 5 2 5 3 5 5 共16种 1 事件 m不小于6 包含 1 5 2 5 3 5 3 3 5 1 5 2 5 3 5 5 共8个基本事件 归纳拓展 1 求复杂事件的概率 要正确分析复杂事件的构成 看复杂事件能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件 然后用概率公式求解 2 一个复杂事件若正面情况比较多 反面情况较少 则一般利用对立事件进行求解 对于 至少 至多 等问题往往用这种方法求解 变式训练2甲袋中装有若干质地 大小相同的黑球 白球 乙袋中装有若干个质地 大小相同的黑球 红球 某人有放回地从两袋中每次取一球 甲袋中每取到一黑球得2分 乙袋中每取到一黑球得1分 取得其他球得零分 规定他最多取3次 如果前两次得分之和超过2分即停止取球 否则取第三次 取球方式 先在甲袋中取一球 以后均在乙袋中取球 此人在甲袋中取到一个黑球的概率为q 在乙袋中取到一个黑球的概率为0 8 用 表示他取球结束后的总分 已知P 1 0 24 1 求q的值 2 试比较此人选择每次都在乙袋中取球得分超过1分与选择上述方式取球得分超过1分的概率的大小 解 1 依题意 得 1 q 0 8 0 2 1 q 0 2 0 8 0 24 解之 得q 0 25 2 设此人按题中方式取球结束后得n分的概率为Pn P2 0 25 1 0 8 1 0 8 1 0 25 0 8 0 8 0 49 P3 0 25 0 8 0 25 0 2 0 8 0 24 若用A表示事件 该人选择先在甲袋中取一球 以后均在乙袋中取球得分超过1分 用B表示事件 该人选择都在乙袋中取球 得分超过1分 则 P A P2 P3 0 49 0 24 0 73 P B 0 8 0 8 0 2 3 0 8 0 8 0 8 0 896 故P B P A 即该人选择每次在乙袋中取球得分超过1分的概率大于该人选择先在甲袋中取一球 以后均在乙袋中取球得分超过1分的概率 A配方的频数分布表 B配方的频数分布表 从用B配方生产的产品中任取一件 其利润记为X 单位 元 求X的分布列及数学期望 以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率 X的数学期望E X 2 0 04 2 0 54 4 0 42 2 68 归纳拓展 1 求离散型随机变量的分布列的关键是正确理解随机变量取每一个值所表示的具体事件 然后综合应用各类求概率的公式 求出概率 2 求随机变量的均值和方差的关键是正确求出随机变量的分布列 若随机变量服从二项分布 或两点分布 则可直接使用公式求解 考题解答技法 本题满分12分 2011年高考福建卷 某产品按行业生产标准分成8个等级 等级系数X依次为1 2 8 其中X 5为标准A X 3为标准B 已知甲厂执行标准A生产该产品 产品的零售价为6元 件 乙厂执行标准B生产该产品 产品的零售价为4元 件 假定甲 乙两厂的产品都符合相应的执行标准 1 已知甲厂产品的等级系数X1的概率分布列如下所示 且X1的数学期望E X1 6 求a b的值 2 为分析乙厂产品的等级系数X2 从该厂生产的产品中随机抽取30件 相应的等级系数组成一个样本 数据如下 353385563463475348538343447567用这个样本的频率分布估计总体分布 将频率视为概率 求等级系数X2的数学期望 3 在 1 2 的条件下 若以 性价比 为判断标准 则哪个工厂的产品更具可购买性 说明理由 2 由已知得 样本的频率分布表如下 5分用这个样本的频率分布估计总体分布 将频率视为概率 可得等级系数X2的概率分布列如下 6分 得分技巧 第 1 问中利用已知条件列出关于a b的等式关系 第 2 问中正确写出分布列 再求出E X2 的值 第 3 问利用题中公式求其性价比 失分溯源 在解答本题时 常出现以下失分的情况 1 未考虑分布列的性质 从而不能列出方程组 也就无法求得a b的值 2 在列频率分布表时 由于不仔细 个别数字出错 导致无法得分 变式训练某地区在一年内遭到暴雨袭击的次数用 表示 据统计 随机变量 的概率分布列如下 1 求a的值和 的数学期望 2 假设第一年和第二年该地区遭到暴雨袭击的次数互不影响
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内网安全培训思路课件
- 内经选读病之形能课件
- 内科中西医结合课件
- 单例模式与自适应算法的结合研究-洞察及研究
- 统编版一年级上册语文园地五 公开课一等奖创新教学设计
- 2025年秋部编版语文四上口语交际 讲历史人物故事(公开课一等奖创新教案+)
- 七下第四单元作业设计(表格式)
- 创业青年培训安全协议课件
- 文库发布:化合价课件
- 创业基础理论课件
- 《无人机飞行控制技术》全套教学课件
- 环境反应工程导论课件
- 超声诊断在肱骨外上髁炎(网球肘)中的应用
- 舆论导向培训课件
- 腮腺脓肿护理查房
- 保管员技师考试题及答案
- 消防自动灭火系统课件
- (2025.06.12)领导干部任前应知应会党内法规和法律知识考试题库(2025年度)
- 关于数据安全管理制度
- 2025年安徽省农业职业技能大赛(水生物病害防治员)备赛试题库(含答案)
- 华中师范大学第─附属中学2025届高三下五月高考模拟英语试卷
评论
0/150
提交评论