重庆大学机自实验班计算机辅助设计与制造总复习PPT.ppt_第1页
重庆大学机自实验班计算机辅助设计与制造总复习PPT.ppt_第2页
重庆大学机自实验班计算机辅助设计与制造总复习PPT.ppt_第3页
重庆大学机自实验班计算机辅助设计与制造总复习PPT.ppt_第4页
重庆大学机自实验班计算机辅助设计与制造总复习PPT.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TotalReviewofComputer aidedDesignandManufacturing ScoreAssessment Attendance 10 Rollcall5times 2markseachtime courseerercises 15 Courseexercises3times 5markseachtime Termpaper 25 Examination 50 2 houropenbookpaper CAD90 plusCAM10 Calculationproblemsandnounsexplain ExaminationMaterial LecturenotesTutorialsandexercisesTeachingMaterial MECHANICALENGINEERINGCAD CAM ReferencesbooksSurfacemodellingforCAD CAM Chapter1 5 7Geometricmodelling chapter9 10 TheCNCWorkshop ver2 chapter1 Chapter1 Instruction WhatisCAD CAM CAE CAPP Howistherelationshipamongthem WhatistheHISTORYofCAD CAM HardwareandsoftwareofCAD CAMsystem WhatisGeometricModellinganditstypicalapplications Chapter2 Curves FourcurvemodelsStandardpolynomialcurveFergusoncurveBeziercurveB splinecurveCurvefitting PolynomialCurveModels CurveSegmentDefinition Acubicpolynomialcurvemodel r u a bu cu2 du3usedinrepresentingacurvesegmentisspecifiedbyitsendconditions e g a 4points P0 P1 P2andP3 or b twoendpointsP0andP1 twoendtangentst0andt1 Ingeneral adegree npolynomialcurvecanbeusedtofit n 1 datapoints FergusonCurveModel Constructingacurvesegment JoiningtwoendpointsP0andP1 Havingspecifiedendtangentst0andt1i e P0 r 0 P1 r 1 t0 r 0 t1 r 1 r u UA UMVwith0 u 1 BezierCurveModel with0 u 1 OnevaluatingtheBezierequationanditsderivativeatu 0 1 r 0 V0r 1 Vnr 0 n V1 V0 r 1 n Vn Vn 1 BezierfoundafamilyoffunctionscalledBernsteinPolynomialsthatsatisfytheseconditions BezierCurveModel Cubic n 3 Beziercurvemodel r u 1 u 3V0 3u 1 u 2V1 3u2 1 u V2 u3V3 r u UMR r 0 V0r 0 3 V1 V0 r 1 V3r 1 3 V3 V2 Theshapeofthecurveresemblesthatofthecontrolpolygon B splineModel with0 u 1 Ni n u Theprimaryfunction B splineModeldefinedbyn 1pointsViisgivenbythe Where B splineModel QuadraticuniformB splinemodelwithcontrolpointsV0 V1 andV2 r t t2t1 U3M3P30 t 1 CubicuniformB splinemodelwithcontrolpointsV0 V1 V2 andV3 r t 1 6 u3u2u1 U4M4P40 t 1 ParametricContinuityCondition Twocurvesegmentsra u andrb u ra 1 P1 rb 0 C0 continuous ra 1 t1 rb 0 C1 continuous ra 1 rb 0 C2 continuous CollectivelycalledaparametricC2 condition ThecompositecurvetopassthroughP0 P1 P2 andthetangentst0andt2areassumedtobegiven Thus theproblemhereistodeterminetheunknownt1sothatthetwocurvesegmentsareC2 continuousatthecommonjoinP1 CubicSplineFitting FergusonModel EmployingFergusoncurvemodelra u UCSarb u UCSbwith0 u 1U u3u2u1 C Sa P0P1t0t1 TSb P1P2t1t2 TApplyingC2continuity ra 1 6P0 6P1 2t0 4t1rb 0 6P1 6P2 4t1 2t2 C0 continuityandC1 continuityalreadyapplied CubicSplineFitting FergusonModel ApplyingparametricC2 conditiont0 4t1 t2 3 P2 P0 Now considerconstructingaC2 continuouscurvepassingthroughasequenceofn 1 P0toPn pointsEndtangentst0andtnaregiven inadditiontothe n 1 points Pi Howmanycurvesegments Therearetotallyncurvesegments Foreachpairofneighbouringcurvesegmentsri 1 u andri u wehaveti 1 4ti ti 1 3 Pi 1 Pi 1 fori 1 2 n 1 B splineModel OnevaluatingthecubicB spline k 4 anditsderivativeatt 1 0 r 0 4V1 V0 V2 6r 1 4V2 V1 V3 6r 0 V2 V0 2r 1 V3 V1 2B splinecurvesandBeziercurveshavemanyadvantagesincommonControlpointsinfluencecurvesegmentshapeinapredictable naturalway makingthemgoodcandidatesforuseinaninteractivedesignenvironment Bothtypesofcurveareaxisindependent multivalued andbothexhibittheconvexhullproperty B splinecurveshaveadvantagesoverBeziercurves Localcontrolofcurveshape Theabilitytoaddcontrolpointswithoutincreasingthedegreeofthecurve V0 V1 V3 V2 CubicSplineFitting Estimationofendtangents t0andtnCircularendconditionPolynomialendconditionFreeendcondition Chapter3 Surfaces FoursurfacepatchmodelsStandardpolynomialsurfacepatchFergusonsurfacepatchBeziersurfacepatchB splinesurfacepatchThreeSurfaceConstructionMethodsTheFMILLmethodFergusonfittingmethodB splinefittingmethodCurvedBoundaryInterpolatingSurfacePatches StandardPolynomialPatchModel Consideravector valuedpolynomialfunctionr u v whosedegreesarecubicinbothuandvwithcoefficientsdijfor ui vj Thatisabi cubic standard polynomialpatchdefinedasr u v with0 u v 1whichcanbeexpressedinamatrixformasr u v UDVTwhere U u3u2u1 V v3v2v1 andthecoefficientsmatrixD FergusonSurfacePatchModel Solvingthe16linearequationsfortheunknowncoefficientsdijgivesusaFergusonpatchequation r u v UDVT UCQCTVTfor0 u v 1C Q BezierSurfacePatchModel r u v UMBMTVT0 u v 1WhereM B ThematrixMiscalleda cubic Beziercoefficientmatrix andBiscalledaBeziercontrolpointnetwhichformsacharacteristicpolyhedron BezierSurfacePatchModel Bezierpatchvs FergusonPatchByevaluatingthecornerconditionsoftheBezierpatch wehavethefollowingrelationships Atu 0 v 0 r 0 0 V00s00 3 V10 V00 t00 3 V01 V00 x00 9 V00 V01 V10 V11 B splineSurfacePatchModel Considera4 4arrayofcontrolvertices Vij r u v UNBNTVTfor0 u v 1N SurfaceConstructionMethods Itisdesiredtouselowdegree usuallycubic polynomialpatchmodeltoformacompositesurface Threemethodstobeintroduced TheFMILLmethodFergusonfittingmethodB splinefittingmethod B SplineSurfaceFitting ComparisonbetweenFergusonfittingandB splinefittingSamecompositesurfaceresultedWhenmakingfurtherchanges localchangeforB splinesurface globalchangeforFergusonsurface Question Whenonecontrolpointischanged howmanypatchesareaffected CurvedBoundaryInterpolatingSurfacePatches Methodsofconstructingasurfacepatchinterpolatingtoasetofboundarycurves RuledsurfacesLoftedsurfacesCoonssurfacesTwotypesofsweepsurfacepatches TranslationalsweeppatchesRotationalsweeppatches RuledSurfaces Considertwoparametriccurves r0 u andr1 u with0 u 1 seefigure Alinearblendingofthe2curvesdefinesasurfacepatchcalledaruledsurfacer u v r0 u v r1 u r0 u 0 u v 1Avectorinthedirectionofr1 u r0 u iscalledarulingvectort u TranslationalSweepSurfacePatches InputSummaryTwoparametricspacecurves g u andd v Atranslationalsweepsurfaceisdefinedbythetrajectoryofthecurveg u sweptalongthesecondcurved v Themovingcurveg u iscalledageneratorcurveTheguidingcurved v iscalledadirectorcurver u v g u d v d 0 0 u v 1 RotationalSweepSurfacePatches AlsoknownassurfaceofrevolutionConsiderasectioncurves u onthex zplanes u x u i z u k x u 0 z u Rotatethesectioncurves u aboutthez axis theresultingsweepsurfacecanbeexpressedasanparametricequationas r u x u cos x u sin z u Chapter4 SolidModelling TwosolidmodelrepresentationschemesGraph basedmodel B reps Booleanmodel CSG EulerFormula Graph BasedModels Forsolidsrepresentedasplanar facedpolyhedron manysimplerepresentationschemesareavailable e g connectivitymatrixforpolyhedron Connectivitymatrix oradjacencymatrix Abinarymatrix0 elementindicatesnoconnectivityexists1 elementsindicateconnectivityexistsbetweenthepairofelements vertices edges orfaces BooleanModels ThebinarytreeforthismodelTheleafnodesaretheprimitivesolids withBooleanoperatorsateachinternalnodeandtheroot Eachinternalnodecombinesthetwoobjectsimmediatelybelowitinthetree and ifnecessary transformstheresultinreadinessforthenextoperation BasicConceptsofSolidModel Euler slaw orEuler sformula

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论