


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2离散型随机变量的方差课前预习学案一、预习目标了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差2.了解方差公式“D(a+b)=a2D”,以及“若(n,p),则D=np(1p)”,并会应用上述公式计算有关随机变量的方差 二、预习内容1、 对于离散型随机变量,如果它所有可能取的值,是,且取这些值的概率分别是,那么, _称为随机变量的均方差,简称为方差,式中的是随机变量的期望2、标准差: _叫做随机变量的标准差,记作_注:方差与标准差都是反映_它们的值越小,则_小,即越集中于均值。课内探究学案一、学习目标1了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差2.了解方差公式“D(a+b)=a2D”,以及“若(n,p),则D=np(1p)”,并会应用上述公式计算有关随机变量的方差 学习重难点:离散型随机变量的方差、标准差;比较两个随机变量的期望与方差的大小,从而解决实际问题二、学习过程问题探究: 已知甲、乙两名射手在同一条件下射击,所得环数x1、x2的分布列如下x18910P0.20.60.2x28910P0.40.20.4 试比较两名射手的射击水平. . 合作探究一:方差的概念 显然两名选手的水平是不同的,这里要进一步去分析他们的成绩的稳定性.样本方差的公式及作用是什么,你能类比这个概念得出随机变量的方差吗? 对于离散型随机变量,如果它所有可能取的值,是,且取这些值的概率分别是,那么, _称为随机变量的均方差,简称为方差,式中的是随机变量的期望标准差: _做随机变量的标准差,记作_注:方差与标准差都是反映_它们的值越小,则_小。 即学即练:1.随机抛掷一枚质地均匀的骰子,求向上一面的点数X的均值,方差和标准差。 2.若随机变量x满足P(xc)1,其中c为常数,求Ex和Dx.3.刚才问题再思考:其他对手的射击成绩都在8环左右,应派哪一名选手参赛?,如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?熟记结论:.方差的性质(1);(2);(3)若B(n,p),则np(1-p) (4)若服从两点分布,则p(1-p) (即学即练:已知xB(100,0.5),则Ex=_ ,Dx=_, sx=_. E(2x-1)=_, D(2x-1)=_, s(2x-1)=_例2:有甲乙两个单位都愿意聘用你,而你能获得如下信息:乙单位不同职位月工资X2/元1000140018002200获得相应职位的概率P20.40.30.20.1甲单位不同职位月工资X1/元1200140016001800获得相应职位的概率P10.40.30.20.1根据工资待遇的差异情况,你愿意选择哪家单位?解析;先求期望,看期望是否相等,在两个单位工资的数学期望相等的情况下,再算方差,,如果认为自己能力很强,应选择工资方差大的单位,;如果认为自己能力不强,就应选择工资方差小的单位.归纳总结:随机变量的方差的定义与一组数据的方差的定义式是相同的;随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛(4)求离散型随机变量的方差、标准差的步骤:理解的意义,写出可能取的全部值;求取各个值的概率,写出分布列;根据分布列,由期望的定义求出E;根据方差、标准差的定义求出、.若B(n,p),则不必写出分布列,直接用公式计算即可(5)对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要四课堂练习1.已知,则的值分别是( )A;B;C;D 2. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为,求E,D3. 设事件A发生的概率为p,证明事件A在一次试验中发生次数的方差不超过1/44.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和 的分布列如下:(注得分越大,水平越高)123pa0.10.6123p0.3b0.3 试分析甲、乙技术状况。 课后练习与提高1甲、乙两个运动员射击命中环数X、Y的分布列如下:环数k8910P(X=k)0.30.20.5P(Y=k)0.20.40.4其中射击比较稳定的运动员是( )A甲 B.乙 C.一样 D.无法比较2.设随机变量XB(n,p),且EX=1.6,DX=1.28,则( )A.n=8,p=0.2 B.n=4,p=0.4C.n=5,p=0.32 D.n=7,p=0.453.AB两个投资项目的利润率分别为随机变量X1和X2。根据市场分析,X1和X2的分布列分别为X15%10%P0.80.2X22%8%12%P0.20.50.3(1)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1和DY2;(2)将x(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 选煤厂自动化控制系统故障诊断与处理方案
- 驱动芯片覆晶封装测试建设项目节能评估报告
- 超高纯电子级气体生产建设项目环境影响报告书
- 干管流域污水管网整治工程环境影响报告书
- 拆除工程周边环境影响控制方案
- 2025年焊工培训考试试题及答案
- 实验动物模拟试题及答案
- 精密导体生产线项目施工方案
- 城乡供水一体化提升改造工程建设工程方案
- 创业团队股权分配及离婚后权益保障协议书样本
- 2025年度餐饮店知识产权保护与合伙人合同
- 《大掺量粉煤灰在混凝土中应用技术规程》
- 农行公务卡管理办法
- 2025河南水投资源开发管理集团招聘11人笔试参考题库附带答案详解
- 小学生词性课件
- 佳能闪光灯信号发射器ST-E2中文说明书
- 上海市周浦中学2025年化学高一下期末统考试题含解析
- 易地移民搬迁政策课件
- 无人机产业股权合作收益分配与技术研发协议
- 2025至2030中国环卫行业市场发展现状及竞争格局与投资机会报告
- 反邪教责任管理制度
评论
0/150
提交评论