已阅读5页,还剩48页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附录I平面图形的几何性质 geometricalpropertiesofanarea 附1 1静矩和形心附1 2惯性矩惯性半径惯性积附1 3平行移轴公式附1 4转轴公式及主惯性轴 StaticMoment CentroidofArea 附1 1静矩和形心 形心 图附1 图附1所示等厚度均质薄板 厚度为t 单位体积的重为g 面积为A 则薄板重心的坐标yc和zc分别为 对均质薄板 其形心公式为 考虑形心公式 则上式可写为 附1 2静矩 或 定理 平面图形的对某一轴之矩若为零 则该轴为图形的形心轴 反之 亦然 其中Syi是第i个简单图形对y轴的静矩 Ai是相应图形的面积 zci是图形形心的z向坐标 附1 3组合图形的静矩和形心 组合图形对某个轴的静矩等于其各部分图形对该轴静矩的代数和 即若图形可以分解为n个规则图形的和 则 而组合图形的形心公式则为 解 取微面积dA b z dz 则 例题试确定图示图形的静矩和形心C的位置 图形对y轴的静矩为 形心坐标yc为 求右图示组合图形的静矩 解 将原图在右端补满 其中内部兰色的矩形和外部黑色的矩形均为规则图形 要注意的是图形I事实上是不存在的 我们在这里使用负面积法 对图形I和图形II 有 附1 2惯性矩惯性半径惯性积 Inertialmoment inertialradius Productofinertia 分别称Iy Iz为图形对y轴和z轴的惯性矩 惯性矩的量纲是 长度 4 惯性矩是恒正的量 定义 惯性矩的国际单位是m4 常用单位是cm4 mm4 惯性矩的大小不仅与图形面积有关 而且与图形面积相对于坐标轴的分布有关 面积离坐标轴越远 惯性矩越大 反之 面积离坐标轴越近 惯性矩越小 iy和iz分别称为图形对于y轴和z轴的惯性半径 惯性半径为正值 它的大小反映了图形面积对坐标轴的聚集程度 惯性半径的量纲是长度 常用单位为mm或m 定义 附1 2 2惯性半径 inertialradius 或 附1 2 3极惯性矩 polarmomentofinertia 为图形对坐标原点o的极惯性矩 极惯性矩恒为正值 它的量纲为 长度 4 常用单位为m4和mm4 定义 由于 则 此式说明了极惯性矩与轴惯性矩之间的关系 为图形对y z轴的惯性积 定义 附1 2 4惯性积 productofinertia 惯性积的数值可正 可负 也可为零 惯性积的量纲是 长度 4 常用单位为m4和mm4 定理 若有一个轴是图形的对称轴 则图形对这对轴的惯性积必然为零 1 均质矩形板 质量为m 长度为l的均质杆 建立图示坐标系 则有 附1 2 5常见图形的惯性矩 惯性积 很容易得到下列结果 圆形 直径为d的圆形 选取图示圆环形积分微元 由于y轴为对称轴 故 圆环形对y 或z 轴的惯性矩为 圆环形 附1 2 6组合图形的惯性矩 惯性积 Iyi为第i个图形对y轴的惯性矩 余类推 组合图形对某个坐标轴的惯性矩等于各简单图形对于同一坐标轴的惯性矩之和 组合图形对某对垂直坐标轴的惯性积 等于各简单图形对该对坐标轴惯性积之和 即 事实上 若y为过图形形心的轴 则有 更一般地 即y为任意时 则有 例题求图示图形对y轴的惯性矩 解 将该组合图形视为由三个矩形 的组合 则每个矩形对y轴的惯性矩为 从而整个图形对y轴的惯性矩为 附1 3平行移轴公式 parallelaxistheorem 对于平面图形 建立坐标系Oyz和基于形心C的坐标系Cyczc 由定义 及坐标变换公式 将图形对y轴的惯性矩用关于形心坐标系的坐标来表达 由于yc是过形心的轴 所以 同理可得 小结移轴公式中的两根平行轴中必须至少有一根轴过形心 在所有平行的轴中 图形对过形心的轴的惯性矩最小 解 将图形看作是两个矩形的结合 形心坐标为 例题试求图示图形对形心轴的惯性矩和惯性积 求图形对y z轴的惯性矩 由于z轴是对称轴 故图形对两轴的惯性积为 附1 4转轴公式及主惯性轴 transformationequationandprincipalcentroidalaxis 图形对某一对坐标轴y和z取得极值时 图形对该坐标轴的惯性积为零 y和z轴称作主惯性轴 图形对主惯性轴的惯性矩称为主惯性矩 主惯性矩的值是图形对通过同一点的所有坐标轴的惯性矩的极值 若主惯性轴通过形心 则该轴称为形心主惯性轴 图形对形心主惯性轴的惯性矩称为形心主惯性矩 基本概念 附1 4 1转轴公式 平面任意图形及新旧坐标系统 图示平面图形对任意一对新坐标轴y轴z轴的惯性矩和惯性积为 若将坐标轴绕坐标原点旋转a角 规定a角逆时针旋转为正 顺时针旋转为负 得到一对新坐标轴y1轴和z1轴 图形对y1轴z1轴的惯性矩和惯性积为 从图中任意一点取微面积dA 它在新旧坐标 y1 z1 和 y z 有如下关系 将此关系代入Iy1 Iz1和Iy1z1中 得 将 代入上式得 同理 a 附1 4 2主惯性轴和主惯性矩 principalmomentofinertia 将式 a 对a求导数 以确定惯性矩的极值 令a a0时 得 由上式可以解得相差90 的两个角度a0和a0 90 从而确定了一对相互垂直的坐标轴y0轴z0轴 图形对这对轴的惯性矩一个取得最大值Imax 另一个取得最小值Imin 将a0和a0 90 分别代入式 a 第一式 经化简得惯性矩极值的计算公式 将a0和a0 90 代入式 a 第三式 得惯性积Iy0z0 0 因此图形对某一对坐标轴y0和z0取得极值时 图形对该坐标轴的惯性积为零 y0和z0轴称作主惯性轴 图形对主惯性轴的惯性矩称为主惯性矩 主惯性矩的值是图形对通过同一点的所有坐标轴的惯性矩的极值 附1 4 3形心主惯性轴和形心主惯性矩 若主惯性轴通过形心 则该轴称为形心主惯性轴 principalcentroidalaxis 图形对形心主惯性轴的惯性矩称为形心主惯性矩 由于图形对于对称轴的惯性积等于零 而对称轴又过形心 所以 图形的对称轴就是形心主惯性轴 形心主惯性轴的特点可归纳为以下几点 形心主惯性轴是通过形心 由角定向的一对互相垂直的坐标轴 图形对形心主惯性轴的惯性矩即形心主惯性矩是图形对通过形心的所有坐标轴的惯性矩的极值 图形对形心主惯性轴的惯性积为零 对称轴一定是图形的形心主惯性轴 例试求图示图形的形心主惯性轴和形心主惯性矩 由于图形有对称中心c 故点c即为图形的形心 以形心c作为坐标原点 平行于图形棱边的y z轴作为参考坐标系 把图形看作是三个矩形 和 的组合图形 解 确定形心位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准劳动合同终止协议书范本
- 2025企业租车租赁合同模板
- 2025互联网公司股权转让居间合同
- 2025年宁夏回族自治区劳动合同制度
- 养老院年度工作总结
- 毕业设计答辩要点与流程
- 安全小报设计专业介绍
- 养老院年中总结范文
- 放射科肿瘤放射治疗术后护理培训指南
- 小学科学《食物中的营养》说课
- 珍酒代理合同协议
- 甘肃陇南市金陇矿业开发有限公司招聘笔试题库2025
- 重症医学科个案护理查房
- 外贸企业如何提升运营效率与管理质量
- 尊享会员合同:全方位权益保障协议
- T-CRHA 088-2024 病理免疫组织化学检测质控品要求
- 自发性气胸的护理常规
- 绘本故事《小鲤鱼跳龙门》课件
- 肾内科医生进修总结汇报
- 【MOOC】英国小说-南京大学 中国大学慕课MOOC答案
- 【MOOC】管理素质与能力的五项修炼-跟我学“管理学”-中南大学 中国大学慕课MOOC答案
评论
0/150
提交评论