




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九部分立体几何第八讲空间直角坐标系 1 通过具体情境 感受建立空间直角坐标系的必要性 2 了解空间直角坐标系 会用空间直角坐标系刻画点的位置 3 通过表示特殊长方体 所有棱与坐标轴平行 顶点的坐标 探索并得出空间两点间的距离公式 1 在空间直角坐标系中 点P 3 2 1 到yOz平面的距离是 A 2B 1C 3D 3 D 解 点P x y z 到坐标平面yOz的距离为 x 3 选D 2 点P x y z 在xOz平面上的射影为P1 则P1的坐标为 A x y 0 B 0 y z C x 0 z D 0 y 0 C 解 x y z 在xOz的射影为 x 0 z x z的坐标不变 y的坐标为0 选C 3 点P 3 2 1 关于坐标平面yOz的对称点的坐标为 4 ABC中 A 2 0 1 B 4 2 3 C 3 1 2 则AB边上的中线CM的长为 3 2 1 解 因为M为AB的中点 所以M的坐标为 即M 1 1 2 所以 CM 题型1 空间直角坐标系的建立及点的坐标例1如图 在四棱锥P ABCD中 底面ABCD是一直角梯形 BAD 90 AD BC AB BC a AD 2a PA 底面ABCD PDA 30 AE BD 试建立适当的坐标系 求出各点的坐标 因为平面PAD 平面ABCD 作EF AD于F 则F为E在底面ABCD的射影 在Rt ADE中 因为 EDA 30 所以AE AD a 在Rt EFA中 EAF 60 所以EF AEsin60 a a AF AE cos60 故E 点评 建立空间坐标系的原则是让更多的点落在坐标轴上 点的坐标的概念是求空间中的点的坐标的依据 即点的空间坐标为该点在坐标轴上的射影在这些坐标轴上的坐标 变式迁移 1 已知正四棱锥P ABCD的底面边长为4 侧棱长为10 试建立适当的空间直角坐标系 写出各顶点的坐标 解 因为正四棱锥P ABCD的底面边长为4 侧棱长为10 所以正四棱的高为2 以正四棱锥的底面中心为原点 平行于BC AB所在的直线分别为x轴 y轴 建立如图所示的空间直角坐标系 则正四棱锥各顶点的坐标分别为A 2 2 0 B 2 2 0 C 2 2 0 D 2 2 0 P 0 0 2 题型2 空间直角坐标系的中点公式及两点间的距离公式例2 1 已知ABCD为平行四边形 且A 4 1 3 B 2 5 1 C 3 7 5 求顶点D的坐标 2 空间坐标系中 A 1 t 1 t t B 2 t t 求 AB 的最小值 解 1 因为平行四边形的对角线互相平分 所以AC的中点即为BD的中点 又AC的中点O 所以x 5 y 13 z 3 故D 5 13 3 2 AB 即 AB 的最小值为 点评 求中点坐标和距离可类比平面直角坐标系中的方法进行 求最值时要建立函数模型 利用求函数的值域的方法求解 变式迁移 2 1 若点P x y z 关于点A 1 0 3 的对称点为B 2 1 4 则P关于xOy平面的对称点C的坐标为 2 已知A x 5 x 2x 1 B 1 x 2 2 x 则A B两点间的距离取得最小值时 x的值为 0 1 2 C 解 1 因为点P x y z 和B 2 1 4 的对称中心为A 1 0 3 所以解之得所以P点坐标为 0 1 2 又C与点P 0 1 2 关于xOy平面对称 所以C的坐标为 0 1 2 题型3 空间直角坐标系的应用例3正三棱柱ABC A1B1C1的底面边长为a 侧棱长为a 建立适当的坐标系 写出A B A1 C1的坐标 求出AC1与其在侧面ABB1A1内的射影所成的角 解法1 如图所示 以点A为坐标原点 以AB所在直线为y轴 以AA1所在直线为z轴 以经过原点且与平面ABB1A1垂直的直线为x轴 建立空间直角坐标系 由已知 得A 0 0 0 B 0 a 0 A1 0 0 a C1取A1B1的中点M 则M 在Rt AMC1中 C1M AM 所以tan MAC1 所以 MAC1 30 所以AC1与其侧面ABB1A1上的射影所成的角为30 连接AM MC1 则MC1 A1B1 所以AC1在平面ABB1A1上的射影为AM 所以 MAC1为AC1与其在平面ABB1A1上的射影所成的角 解法2 设AB的中点为D 以C为坐标原点 CD所成直线为x轴 过点C与AB平行的直线为y轴 以CC1所在直线为z轴 建立如图所示的坐标系 点评 利用空间直角坐标系可以解决长度 角 距离等问题 但要注意角和距离仍需通过图中的线面关系找到所求角或距离 再利用坐标求得相应长度 通过解三角形解决问题 变式迁移 3 在正四棱锥S ABCD中 底面边长为a 侧棱长也为a 以底面中心O为坐标原点 建立如图所示的空间直角坐标系 P点在侧棱SC上 Q点在底面对角线BD上 试求P Q两点间的最小距离 解 由于S ABCD是正四棱锥 所以P点在底面上的射影R在OC上 又底面边长为a 所以OC a 而侧棱长也为a 所以SO OC 于是RP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业岗前安全培训课件
- 化工企业工厂安全培训课件
- 养不教父之过课件
- 兴趣爱好课件教学
- 化工仪表工安全培训题库课件
- 影视剧特技演员聘用合同范本5篇
- 内部监督平台介绍
- 化安全培训效果评价课件
- 内部安全生产培训会课件
- 内部安全培训通知课件
- iqc进料检验员试题及答案
- 4-04-05-04 国家职业标准数据库运行管理员S (2025年版)
- 民兵学习护路知识课件
- 危重患者皮肤管理课件
- 2025年国防教育知识竞赛试题(附答案)
- 工伤受伤经过简述如何写
- 银行现金取款申请书
- 人事外包招聘代理合同
- 数字经济学-课件 第3章 数字技术
- AI引领时尚设计新潮-个性化需求的新一代解决方案
- 高二数学直线倾斜角与斜率同步练习题
评论
0/150
提交评论