随机过程在金融中的应用6鞅和鞅表示.ppt_第1页
随机过程在金融中的应用6鞅和鞅表示.ppt_第2页
随机过程在金融中的应用6鞅和鞅表示.ppt_第3页
随机过程在金融中的应用6鞅和鞅表示.ppt_第4页
随机过程在金融中的应用6鞅和鞅表示.ppt_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章鞅和鞅表示 第一节离散鞅 第二节连续时间鞅 第三节鞅轨迹的特征 第四节鞅举例 第五节鞅表示 第一节离散鞅 一 离散鞅的定义及性质 定义1 1 2 离散鞅序列 简称为鞅 首页 注 无后效性 鞅的直观背景解释 设想赌徒在从事赌博过程中 他在第n年的赌本为 表示在已知前n年的赌本的条件下 第n 1年的平均赌本 而鞅 则表示这种赌博使第n 1年的平均赌本仍为第n年的赌本 这种赌博称为公平赌博 首页 定义2 1 2 简称为鞅 3 首页 定理1 充分性显然 证 必要性用归纳法来证 由假设知 1 则有 首页 性质1 常数序列为鞅 证 性质2 即 证 依次递推 可得 首页 例1 令 且对任意有 证 由条件期望的性质可得 且 所以 首页 例2 令 证 1 2 所以 首页 定义3 1 2 简称为上鞅 3 二 上 下鞅的定义及性质 类似 下鞅 首页 关于上 下鞅的的直观解释 上鞅表示第n 1年的平均赌本不多于第n年的赌本 即具有上鞅这种性质的赌博是亏本赌博 下鞅表示第n 1年的平均赌本不少于第n年的赌本 即具有下鞅这种性质的赌博是盈利赌博 性质3 为鞅的充分必要条件是 既为上鞅也为下鞅 性质4 上鞅 下鞅 下鞅 上鞅 首页 性质5 上鞅 下鞅 证明 同定理1类似 用数学归纳法 首页 性质6 上鞅 下鞅 证 由性质5得 上鞅 首页 上鞅 性质7 上鞅 下鞅 下鞅 证 上鞅 首页 上鞅 性质8 上鞅下鞅 证 下鞅 下鞅上鞅 由性质4及性质7立即可得结果 首页 性质9 鞅 下鞅 证明 例3 设 是在直线上整数点上的贝努利随机游动 即它是一个以为状态空间的时齐的马尔可夫链 它的转移矩阵满足 首页 其中 则 1 2 3 首页 证 设 其中 所以 故 下鞅 0 0 0 上鞅 鞅 首页 三 停时 定义5 也即 简称为停时 首页 停时的直观背景解释 设想赌徒在前n 1次赌博的赌本为 那么停时就是这个赌徒决定何时停止赌博的策略 停时的性质表示这一事件只依赖于n时刻以前 包括n时刻 的赌本 而与将来的赌本无关 即赌徒在时刻n是否停止赌博 只依赖于他过去的经历 而与尚未见到的将来情况无关 定理2 下列命题等价 首页 1 2 3 证明 1 与 2 的等价性 一方面 另一方面 首页 例4 2 与 3 的等价性由如下两个等式关系即得 证 所以为停时 首页 令 例5 即为首次进入A的时刻 则是停时 证 注 若令为最后进入A的时刻 则不是停时 原因是要确定 不仅要看是否取值在A中 还需知道全部的情况 返回 首页 第二节连续时间鞅 一 定义 设表示观测由时间t为连续时间随机过程 表示随时间流逝可得到的一系列信息集 信息集满足 过滤 如果的值在每一时包含于信息集中 则称 适应于 即表示 给出信息集 就会知道价值 首页 使用不同的信息集就会产生顺序的不同的预期 从而 可用条件期望表示成 设是一个随机过程 鞅 信息集为和概率为P 即未被观测的未来价值的最好预测是的最近观测 称过程是鞅 首页 鞅过程的基本特征 鞅是在给定当前信息集时 未来变化完全不可测的随机变量 鞅的未来变化的方向是不可能预测的 换句话 例如 设是一个鞅 反之 如果一个过程的轨迹呈现出一个可识别的长或短期趋向 则这个过程不是鞅 首页 鞅过程重要特征 一个鞅的定义是考虑信息集和一些概率标准 如果改变与过程有关的信息集和概率 这个过程就不再是鞅 若一过程不是鞅 就能通过修改相关的概率标准P并且使称为鞅 二 鞅在资产定价方面的应用 反之有 1 通常贴现债券的价格随时间而增加 平均起来是上涨 则有 债券的价格 即贴现债券价格的运动不是鞅 首页 2 通常一风险股票会有一正的期望收益 其中是一个正的期望收益率 股票价格 即风险股票不是鞅 对于一小间隔可大体写成 3 期权 期权有时间价值 并且随时间流逝欧式期权价格会下降 故也不是鞅 首页 尽管大多数金融资产不是鞅 但可以把它们转化成鞅 4 下鞅转化成鞅方法 第一种 这是围绕趋向的偏离完全不可测 只要减去期望趋向 变形的变量即是鞅 道布 迈耶分解 在一些普通条件下 一任意的连续时间过程能被分解成一个鞅和一个增长 或下降 过程 后部分的消除即可产生鞅 第二种 找一个与给定的概率P等价的概率 计算新的条件期望 使其成为一个鞅 首页 债券价格 例如 股票价格 可以找一概率分布以使债券或股票价格通过无风险利率贴现变成鞅 返回 首页 第三节鞅轨迹的特征 一 鞅轨迹的描述 则鞅的特征 是小的时间间隔 考虑鞅变化 它意味着鞅的增量是完全不可测的 首页 则无论多么小 鞅就会呈现出非常不规则的轨迹 事实上 若呈现出任何肉眼能看出的趋势 则就是可测的 不规则轨迹在两种方式下发生 即连续或跳跃 其对应的是连续鞅和右连续鞅 连续鞅轨迹 连续鞅轨迹是连续的 首页 右连续鞅轨迹 轨迹被偶然的跳跃所干扰 从而使轨迹成为右连续 即在跳跃点是鞅右连续 连续平方可积鞅 设是一连续鞅 且具有有限二阶矩 则称具有有限方差的过程为连续平方可积鞅 注 连续平方可积鞅非常接近于布朗运动 首页 例1 构造一个具有两个相互独立泊松过程的鞅 假设金融市场由 好 和 坏 的消息影响 忽略消息内容 但保留其好或坏的信息 且用 假定到达金融市场的信息与过去完全无关 并且好 坏信息是完全独立的 假定在一微小间隔内至多有一个好或坏信息能发生 并且这两种信息发生的概率一样 即增量变化的概率可表示为 则变量是鞅 首页 证明 则条件期望 其中 故 即是鞅 首页 说明 假设好消息的概率比坏消息的概率大 则就不是鞅 若 则 故不是鞅 首页 二 鞅轨迹的特征 定义轨迹的变化 首页 观察重要特征 首先 即 由于 意味着 首页 有 又因为 即有 故 由于 故有 首页 1 变化会趋向于无穷大并且连续鞅会变得非常不规则 二次变化收敛于一定义的随机变量 2 3 所有更高级变化在一些概率情形下会消失 意味着更高级变化并不包括比更多的信息 即如果人们确信标的的过程是连续鞅 则更高级变化可被忽略 意味着无论轨迹如何不规则 鞅是平方可积且小于间隔的增量的平方和是收敛 即能被用于一有意义的等式 意味着在连续平方可积鞅中不是非常有用的实用的量 鞅轨迹特征 返回 首页 第四节鞅举例 布朗运动 例1 即 若增量相互独立 则有 问是鞅吗 首页 由于 即 则在给出的概率分布以及到时间t观察到的信息的期望 故不是鞅 首页 说明1 若做新过程 则是一个鞅 因为 则是一个鞅 首页 此为例3 指数过程 说明2 考虑转换 则此转换能将变成鞅 即是鞅 首页 平方过程 例2 初始点为 令 问是鞅吗 解 首页 这说明的增量是可测的 故不是鞅 可将转换成是鞅 说明 若令 则 首页 但由表示的补偿泊松分布 例4 右连续鞅 所以有一个明显的向上趋势 即不是鞅 就是鞅 且是方差有限 平方可积鞅 首页 注 例子再次描述了同一理论 如果一随机过程不是鞅 那么通过抽取一适当的均值就能变成鞅 在金融市场中 人不能预期所观察市场风险证券的价值能等于由无风险利率贴现的期望价值 这有一个风险溢价 因此 任何风险资产价格 若由无风险利率贴现就不是鞅 但前期讨论表明这样的资产价格或许能被转化成鞅 这样的转换在定价金融资产中非常有用 返回 首页 第五节鞅表示 一 例子 若每一时间间隔非常小 且市场是 流动 的 则资产价格就有可能表现出至多一个向上或向下的过程 即的变化可表示为 并且假设是相互独立的 首页 若 特别 则的期望价值就等于0 如何构造标的的概率空间 首先需要构造一个由所有可能价格变化的样本路径或轨迹组成的集合 即样本空间 它的元素由一系列构成 问题1 其次定义与这些轨迹有关的概率 当价格变化是相互独立的 且是有限的 则序列的概率是每一价格变化的概率相乘 如轨迹为 则有 这就解决了资产价格变化的序列 首页 如 其次 资产价格水平 衍生证券通常写成其本身的价格 就可从随后的变化中得到资产价格的水平 由于是由的和构成 那么可以用轨迹概率的方法得到的概率分布 如果所有的是由 1的变化组成的 即 则概率取 例如 首页 同样 其产出的概率是 一般地 通常价格会落在之间的某处 如在所有k个增量变化中 有m个 1的变化 个的变化 其概率为 此概率为二项分布 当 它收敛于正态分布 首页 问题2 考虑由上式给出的概率的期望 如果 则 这意味着考虑到包括过去价格变化的信息以及这个特殊的概率分布而定义的是鞅 首页 如果 然而定义中心过程 则就转成鞅 说明 提供了一个概率空间的具体的讨论以及如何把概率理论应用于与资产定价有关的各种轨迹 或 首页 二 道布 迈耶分解 考虑一个在任何时间向上的概率大于向下的概率的情况的特殊资产 以此期望一个在观察轨迹中的向上趋势 则 意味着 即 又因 其中 首页 因此 一个下鞅可分解成两部分 第一部分是一个递增的决定变量 表示的是一种简单的道布 迈耶分解得情形 一般地 定理1 把在一个连续间隔的有限时间点上所观察的过程中的向上趋势的下鞅分解成有一个决定趋向和一个鞅 首页 注 此理论表明即使连续观察的资产价格包含有明显的跳跃和向上的趋势 则通过抽掉一个趋势把它们转换成鞅 如果起初的连续时间过程并不呈现出任何的跳跃 但是连续的 则产生的鞅就会是连续的 三 道布分解的应用 设 即如果标的资产价格高于执行价格K 期权的值为如果标的资产的价格低于K 则期权的价值就是0 由于 所以使用在时间t 的信息计算它的预期

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论