已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章样本及抽样分布 第一节总体与样本 第二节样本分布函数直方图 第三节样本函数与统计量 第四节抽样分布 对随机现象进行观测 试验 以取得有代表性的观测值 并对已取得的数据进行归纳整理 画出统计图表 来反映研究对象的数据分布特征 对已取得的观测值进行整理 分析 作出推断 决策 从而找出所研究的对象的规律性 客观上 只允许我们对随机现象进行次数不多的观察试验 我们只能获得局部观察资料 在数理统计中 不是对所研究的对象全体 称为总体 进行观察 而是抽取其中的部分 称为样本 进行观察获得数据 抽样 并通过这些数据对总体进行推断 数理统计方法具有 部分推断整体 的特征 数理统计学是一门应用性很强的学科 它是研究怎样以有效的方式收集 整理和分析带有随机性的数据 以便对所考察的问题作出推断和预测 第一节总体与样本 总体和样本简单随机抽样 每个具有的数量指标的全体就是总体 population 每个数量指标就是个体 人们往往研究有关对象的某一项 或几项 数量指标 为此 对这一指标进行随机试验 观察试验结果全部观察值 从而考察该数量指标的分布情况 1 总体 研究对象全体元素组成的集合 一 总体和样本 所研究的对象的某个 或某些 数量指标的全体 它是一个随机变量 或多维随机变量 记为X 总体有三层含义 研究对象的全体 全部数据 分布 2 个体 组成总体的每一个元素 即某个数量指标的全体中的一个 可看作随机变量X的某个取值 用Xi表示 总体中所包含的个体的个数称为总体的容量 总体 有限总体 无限总体 例1 研究某批灯泡的寿命时 关心的数量指标就是寿命 那么 此总体就可以用随机变量X表示 或用其分布函数F x 表示 某批灯泡的寿命 总体 寿命X可用概率 指数 分布来刻划 常用随机变量或用其分布函数表示总体 比如说总体X或总体F x 统计中 总体这个概念的要旨是 总体就是一个概率分布 类似地 在研究某地区中学生的营养状况时 若关心的数量指标是身高和体重 我们用X和Y分别表示身高和体重 那么此总体就可用二维随机变量 X Y 或其联合分布函数F x y 来表示 从总体中抽取容量为n的样本 就是对代表总体的随机变量随机地 独立地进行n次试验 观测 每次试验的结果可以看作是一个随机变量 n次试验的结果就是n个随机变量X1 X2 Xn 这些随机变量相互独立 并且与总体服从相同的分布 设得到的样本观测值分别是x1 x2 xn 则可以认为抽样的结果是发生了n个相互独立的事件 X1 x1 X2 x2 Xn xn 样本中所包含的个体数目称为样本容量 3 样本 从总体中抽取的部分个体 例2 检验一批灯泡的寿命 从中选择100只 则 总体 这批灯泡 有限总体 个体 这批灯泡中的每一只样本 抽取的100只灯泡样本容量 100样本值 x1 x2 x100 1 若从总体X中抽取样本X1 X2 Xn 满足 1 随机性 总体中每一个个体都有同等机会被选入 即样本Xi与总体X有相同的分布 2 独立性 样本中每一样品的取值不影响其它样品的取值 即X1 X2 Xn相互独立 二 简单随机抽样 这种随机的 独立的抽样方法称为简单随机抽样 简单随机样本是应用中最常见的情形 今后 若不特别说明 就指简单随机样本 由简单随机抽样得到的样本称为简单随机样本 设总体X的分布为F x 则简单随机样本的联合分布为 1 当总体X是离散型时 其分布律为 样本的联合分布律为 2 当总体X是连续型时 X f x 则样本的联合概率密度为 简单随机样本X1 X2 Xn可以看成是n个独立同分布 iid 的随机变量 其共同分布即为总体分布 2 简单随机样本的联合分布函数 independent identicallydistributed 例3 设 X1 X2 Xn 为X的一个样本 求 X1 X2 Xn 的密度 解 X1 X2 Xn 为X的一个样本 故 例4 某商场每天客流量X服从参数为 的泊松分布 求其样本 X1 X2 Xn 的联合分布律 解 例5 设某批产品共有N个 其中的次品数为M 其次品率为 p M N 若p是未知的 则可用抽样方法来估计它 X服从参数为p的0 1分布 可用如下表示方法 从这批产品中任取一个产品 用随机变量X来描述它是否是次品 设有放回地抽取一个容量为n的样本 X1 X2 Xn X1 X2 Xn 的联合分布为 其样本值为 x1 x2 xn 样本空间为 若抽样是无放回的 则前次抽取结果会影响后面抽取结果 例如 所以 当样本容量n与总体中个体数目N相比很小时 可将无放回抽样近似地看作放回抽样 统计是从手中已有的资料 样本值 去推断
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年仓储货物仓储合同签订流程样本
- 2025年石家庄市新华区第一幼儿园招聘考试参考试题及答案解析
- 2025年婚礼婚礼现场安保服务合同协议
- 2025年直播平台广告代理服务合同
- 2025年新能源行业绿色国际合作与市场拓展研究报告
- 2025年三八妇女节妇女权益保障法律知识竞赛题库及答案
- 2025年低空经济空中交通管理伦理挑战与法规应对报告
- 2025年医疗质量与安全教育培训试题及答案
- 2025年低空经济产业投资风险预警报告
- 宁波历史中考试题及答案
- 疼痛叙事的文化编码-洞察及研究
- 心内科常见病健康教育
- 银行网点手语管理办法
- 狂犬病的护理
- 桥梁养护巡查管理培训
- 工会看电影活动方案
- 牙髓病和根尖周病的护理
- 口腔牙模印模消毒规范与实施
- 水果店员工管理制度
- 2025秋数学人教二年级(上) 校园小导游:第2课时 校园小导游
- 中医信息系统用户中医权限分级制度
评论
0/150
提交评论