




已阅读5页,还剩71页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天马行空官方博客 与它的性质 棱锥 这些物体给我们以棱锥的形象 塔的顶部 观察图形 它们具有哪些特点 天马行空官方博客 9 9 4棱锥与它的性质 我们从生活中顶尖底平带棱的锥体的实物形状的感性认识 根据我们观察图形所具有的特点 能说有一个面是多边形 其余各面都是三角形的几何体是棱锥吗 有一个面是多边形 其余各面是有一个公共顶点的三角形围成的几何体叫棱锥 天马行空官方博客 S A B C D E O 棱锥的概念 这个多边形叫做棱锥的底面 其余各面叫做棱锥的侧面 相邻侧面的公共边叫做棱锥的侧棱 各侧面的公共顶点叫做棱锥的顶点 顶点到底面的距离叫做棱锥的高 有一个面是多边形 其余各面是有一个公共顶点的三角形 由这些面所围成的几何体叫做棱锥 天马行空官方博客 棱锥的表示棱锥用表示顶点和底面各顶点 或者底面一条对角线端点的字母来表示 记法 棱锥S ABCDE或棱锥S AC 棱锥的分类 按底面多边形的边数分 三棱锥 四棱锥 五棱锥 三棱锥A BCD 四棱锥V ABCD 五棱锥S AC 各面都是全等的等边三角形的三棱锥叫做正四面体 特殊的棱锥 正棱锥正棱锥的概念 如果一个棱锥的底面是正多边形 并且顶点在底面的射影是底面中心 这样的棱锥叫做正棱锥 棱锥的性质1 一般棱锥的性质 定理 如果棱锥被平行于底面的平面所截 那么截面和底面相似 并且它们的面积的比等于截得的棱锥的高与已知棱锥的高的平方比 H H 已知 在棱锥S AC中 SH是高 截面A B C D E 平行于底面 并且与SH交于H H H 证明 因为截面平行于底面 所以A B AB B C BC C D CD A B C ABC B C D BCD 又因为过SA SH的平面与截面和底面分别交于A H 和AH A H AH 因此截面A B C D E 底面ABCDE 思考截面和底面的面积的比是否等于截得的棱锥的多边形边长与已知棱锥的相应的多边形边长的平方比 你还能得到一些什么结论 说明对应角相等 对应边对应成比例的多边形是相似多边形 相似多边形面积的比等于对应边的比的平方 所以 定理可以另表述为 如果棱锥被平行于底面的平面所截 那么截面和底面相似 并且它们的面积的比等于截得的棱锥的有关线段长与已知棱锥的相应线段长的平方比 2 正棱锥的性质 如果一个棱锥的底面是正多边形 并且顶点在底面的射影是底面中心 这样的棱锥叫做正棱锥 正棱锥的除了前面的截面性质外 你还能得到哪些其他性质 性质1 各侧棱相等 各侧面都是全等的等腰三角形 各等腰三角形底边上的高相等 它叫做正棱锥的斜高 性质2 棱锥的高 斜高和斜高在底面内的射影组成一个直角三角形 棱锥的高 侧棱和侧棱在底面内的射影也组成一个直角三角形 2 正棱锥的性质 例1 判断正误 1 正棱锥的侧面是正三角形 2 正棱锥的侧面是等腰三角形 3 底面是正多边形的棱锥是正棱锥 4 正棱锥的各侧面与底面所成的二面角都相等 5 侧棱都相等的棱锥是正棱锥 6 有一个面是多边形 其余各面是三角形的几何体是棱锥 例题分析 例2 已知 正四棱锥S ABCD中 底面边长为2a 侧棱长为2a求 1 斜高 2 侧棱和底面所成角 3 侧面和底面所成角的正弦值 例2 已知 正四棱锥S ABCD中 底面边长为2a 侧棱长为2a求 1 斜高 2 侧棱和底面所成角 3 侧面和底面所成角的正弦值 本题答案 h h R r 正棱锥中的基本图形 l 例3 如图 已知正三棱锥S ABC的高SO h 斜高SM l 求经过SO的中点且平行于截面 A B C 的面积 O 点O是正三角形ABC的中心 AB 2AM 2 OM tan600 根据棱锥截面的性质 有 过高的中点且平行于底面的截面叫做中截面 练习 过高的中点且平行于底面的截面叫做中截面 棱锥的中截面面积等于底面面积的1 4 3 三棱锥A BCD中 AC BD AD BC AB CD 三个侧面与底面所成的二面角分别为 求cos cos cos 的值 A B C D 略解如图所示 由已知所有侧面三角形和底面三角形都是全等的三角形 记其面积为S 侧面在底面的射影面积分别为S1 S2 S3 则cos cos cos S1 S2 S3 S 1 s2 s3 s1 小结有一个面是多边形 其余各面是有一个公共顶点的三角形围成的几何体叫棱锥 如果一个棱锥的底面是正多边形 并且顶点在底面的射影是底面中心 这样的棱锥叫做正棱锥 如果棱锥被平行于底面的平面所截 那么截面和底面相似 并且它们的面积的比等于截得的棱锥的高 有关线段长 与已知棱锥的高 相应线段长 的平方比 正棱锥的性质 性质1 各侧棱相等 各侧面都是全等的等腰三角形 斜高相等 性质2 棱锥的高 斜高和斜高在底面内的射影组成一个直角三角形 棱锥的高 侧棱和侧棱在底面内的射影也组成一个直角三角形 正棱锥中的基本图形 作业1 教材P62第7 8题2 思考 将正三棱锥 正四棱锥 正五棱锥 正六棱锥中基本量l h h a R r 以及侧棱与底面所成角 侧面与底面所成的角 通过四个直角三角形将它们联系在一起 找出它们之间的关系 9 9 4棱锥与它的性质 习题课 1 一个棱锥被平行于底面的截面所截 若截面面积与底面面积之比为1 3 求棱锥的侧棱被分成的两段 自上而下 的比 2 已知正四棱锥的相邻两侧面的夹角为120 它的底面边长为a 求 1 棱锥的高 2 斜高 3 侧棱长 练习 解 过S作SO 底面AC SG BC O G为垂足 过点A作AE SB 垂足为E 连结CE SAB SBC CE SB AEC为侧面SAB与侧面SBC所成二面角的平面角 AEC 120 连结EO AO CO AE EC AEO 60 棱锥的斜高为a 高为a 2 侧棱长为a 例1已知正六棱锥的侧面和底面所成的角为 底面边长为a 求这个正六棱锥的高 侧棱和斜高 解作出正六棱锥的特征图形 如图 过底面中心O作OM AB于M 连SM 则由三垂线定理SM AB SMO AM a 2 在Rt SAO中注图形较复杂时 可以作出与已知数量和所求数量有关的特征图 例2 将正方体截去一个角 求证 截面是锐角三角形 已知 正方体中截去以P为顶点的一角得截面ABC 求证 ABC是锐角三角形 P 例3 四棱锥P ABCD的底面是矩形 侧面PAD是正三角形 且侧面PAD 底面ABCD 1 求平面PAB与平面PCD所成二面角的大小 2 当的值等于多少时 能使PB AC 请给出证明 1 设平面PAB 平面PCD l AB CD AB 面PCD AB l CD l 平面PAD 平面ABCD 且AB AD AB 面PAD AB PA AB PD l PA l PD APD为二面角AB l CD的平面角 PAD为正三角形 APD 60 证明 如图 P ABC是一个四面体 PAB PBC PCA都是直角三角形 则z2 a2 b2 c2 2 z 0 a2 b2 c2 0即c2 a2 b2 b2 a2 c2 BAC ABC都小于90 ABC为锐角三角形 P 9 9 5直棱柱和正棱锥的直观图的画法1 直棱柱的直观图的画法 1 x y O z A B C D E F 直棱柱的直观图的画法 2 x y O z A B C D E F A B C D E F 直棱柱的直观图的画法 3 x y z A B C D E F A B C D E F 2 正棱锥的直观图的画法 1 x y O z A B C D E 正棱锥的直观图的画法 2 x y O z A B C D E S 正棱锥的直观图的画法 3 A B C D E S 正六棱锥 A B C D E F 补充内容 棱锥的面积 1 正棱锥的侧面积棱锥的侧面展开图是由各个侧面组成的 展开图的面积就是棱锥的侧面积 设正n棱锥的底面边长为a 周长为c 斜高为h 则展开图的面积等于n ah ch 2 正棱锥的侧面积公式 如果正棱锥的底面周长是c 斜高是h 那么它的侧面积是S正棱锥侧 3 棱锥的全面积 棱锥的全面积等于侧面积与底面积的和 棱锥的体积公式 如果棱锥的底面积是S 高是h 那么它的体积是V三棱锥 sh 棱锥体积公式研究 例 如图 三棱柱AD1C1 BDC 底面积为S 高为h 问 这几个三棱锥的体积关系如何 结论 底面积是S 高是h的棱锥体积为 利用三棱锥的体积公式求点到平面的距离的大致步骤 1 把点到平面的距离看成一个三棱锥的高 2 求与此高对应的底面的面积 3 转换顶点或用割补法求出此三棱锥的体积 4 利用三棱锥体积的自等性 计算三棱锥的体积时 可以把三棱锥先看成四面体 把它的四个顶点中的任何一个作为三棱锥的顶点 而把不含这个顶点的面作为三棱锥的底面 即如果三棱锥是A BCD 那么有VA BCD VB CDA VC DAB VD ABC 这一性质称为三棱锥体积的自等性 这是三棱锥独具的性质 列出方程求高 练习 已知 边长为a的正方体ABCD A1B1C1D1 求 棱锥C1 BA1D的体积 求 棱锥C1 BA1D的体积 解 已知 边长为a的正方体ABCD A1B1C1D1 9 9 6正多面体 1 正多面体定义 每个面都是相同边数的正多边形 每个顶点为端点都有相同棱数的凸多面体 叫做正多面体 2 正多面体只有五种 正四面体 正六面体 正方体 正八面体 正十二面体和正二十面体 考察下图 在这图上画着四面体 正方体 八面体 十二面体和二十面体 它们的形状是完美的典型 正多面体只有正四面体 正八面体 正六面体 正十二面何等和正二十面体五种 正四面体 正六面体 正八面体 讨论 正四面体的展开图总共有兩种 正六面体的展开图共有11种 正八面体的展开图共有12种 结论 正四面体每个頂点只能接三面正三角形正六面体每个頂点只能接三面正方形当正六面体有四个正方形连在一起时 另外兩个不能在同一边 问题1 下列共有五个正多面体 分别数出它们的顶点数V 面数F和棱数E 并填表1表1中多面体的面数F都随顶点数目V的增大而增大吗 多面体及欧拉定理 1 正多面体定义 每个面都是相同边数的正多边形 每个顶点为端点都有相同棱数的凸多面体 叫做正多面体 2 正多面体只有五种 正四面体 正六面体 正方体 正八面体 正十二面体和正二十面体 3 简单多面体 表面经过连续变形可变为球面的多面体 叫做简单多面体 4 多面体欧拉定理简单多面体的顶点数为V 面数为F 棱数为E 三者之间有关系 V F E 2 在某个橡皮膜上 当橡皮膜变形后 有的地方伸长 有的地方压缩 但不能破裂或折叠 橡皮膜上的图形的形状也跟着改变 这种图形的变化过程我们称之为连续变形 多面体欧拉定理简单多面体的顶点数为V 面数为F 棱数为E 三者之间有关系 V F E 2正多面体中设正多面体的每个面的边数为m 每个顶点连结的棱数为n 则有 E nF 2E mV 21 m 1 n 1 E 1 2 证明欧拉定理方法1 利用几何画板 逐步减少多面体的棱数 分析V F E先以简单的四面体ABCD为例分析证法 去掉一个面 使它变为平面图形 四面体顶点数V 棱数V与剩下的面数F1变形后都没有变 因此 要研究V E和F关系 只需去掉一个面变为平面图形 证V F1 E 1 1 去掉一条棱 就减少一个面 V F1 E不变 依次去掉所有的面 变为 树枝形 A B C C B D A D 2 从剩下的树枝形中 每去掉一条棱 就减少一个顶点 V F1 E不变 直至只剩下一条棱 以上过程V F1 E不变 V F1 E 1 所以加上去掉的一个面 V F E 2 对任意的简单多面体 运用这样的方法 都是只剩下一条线段 因此公式对任意简单多面体都是正确的 A B C D A B 方法2 计算多面体各面内角和设多面体顶点数V 面数F 棱数E 剪掉一个面 使它变为平面图形 拉开图 求所有面内角总和 一方面 在原图中利用各面求内角总和 设有F个面 各面的边数为n1 n2 nF 各面内角总和为 n1 2 1800 n2 2 1800 nF 2 1800 n1 n2 nF 2F 1800 2E 2F 1800 E F 3600 1 另一方面 在拉开图中利用顶点求内角总和 设剪去的一个面为n边形 其内角和为 n 2 1800 则所有V个顶点中 有n个顶点在边上 V n个顶点在中间 中间V n个顶点处的内角和为 V n 3600 边上的n个顶点处的内角和 n 2 1800 所以 多面体各面的内角总和 V n 3600 n 2 1800 n 2 1800 V 2 3600 2 由 1 2 得 E F 3600 V 2 3600所以V F E 2 注意 1 欧拉公式的两种证明方法 内角和 破面法 2 欧拉公式可看成平面多边形的顶点数V 面数F 棱数E满足V F E 2的推广形式 3 欧拉公式的简单应用 例1 已知单晶铜外形是简单多面体 单晶铜有三角形和八边形两种晶面 如果单晶铜有24个顶点 以每个顶点为一端都有三条棱 计算单晶铜的两种晶面的数目 解析 解析 用方程思想 先设三角形和八边形的个数分别为x个和y个 再利用欧拉定理和棱数与面多边形边数的关系分别建立两个方程 解之即得 解 设有x个三角形和y个八边形 则F x y V 24 则 练习题1 2003年全国 棱长为a的正方体中 连结相邻面的中心 以这些线段为棱的八面体的体积为 A a3 3B a3 4C a3 6D a3 12正四面体的中心到底面的距离与这个四面体高的比为 A 1 2B 1 3C 1 4D 1 5参考答案 C C 3 已知一个简单多面体的各个顶点都有三条棱 则顶点数V与面数F满足的关系正确的是 A 2F V 4B 2F V 4C 2F V 2D 2F V 24 正二十面体的面是正三角形 且以每一个顶点为一端都有五条棱 则其顶点数V和棱数E的值为 A V 30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车考试题库大全及答案
- 单位内部考试题库及答案
- 风湿免疫学试题库及答案
- 2025年初级大数据分析师认证模拟题
- 2025健康管理师考试题型及答题技巧分享
- 2025年注册验船师资格考试(B级练习题)自测试题及答案一
- 2025年篮球裁判员素养考核试卷及答案
- 2025年工厂厂区安全保卫员招聘考试模拟题集及答案
- 2025年市场营销经理面试宝典市场策略与团队管理模拟题集
- 2025年交通运输管理局工作人员考试题目公开
- 《数鸡蛋》(教学设计)-2024-2025学年一年级上册数学北师大版
- 食品配送车辆管理制度
- 2025智联招聘行测题库及答案解析
- 英语学科融合教学听课心得体会
- GB/T 12643-2025机器人词汇
- 自由职业者合作协议合同范本
- 山西省太原市2024-2025学年高一上学期期末考试 数学 含解析
- 慈溪教育局劳动合同
- 2025年水发集团有限公司招聘笔试参考题库含答案解析
- DBJ∕T 13-262-2017 福建省里氏硬度法现场检测建筑钢结构钢材抗拉强度技术规程
- 价值观使命培训
评论
0/150
提交评论