Pearson相关系数简介分析.ppt_第1页
Pearson相关系数简介分析.ppt_第2页
Pearson相关系数简介分析.ppt_第3页
Pearson相关系数简介分析.ppt_第4页
Pearson相关系数简介分析.ppt_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两变量关联性分析pearson相关系数介绍 世间万物是普遍联系的 医学上 许多现象之间也都有相互联系 例如 身高与体重 体温与脉搏 年龄与血压 产前检查与婴儿体重 乙肝病毒与乙肝等 在这些有关系的现象中 它们之间联系的程度和性质也各不相同 相关的含义 图5 0 a 函数关系 客观现象之间的数量联系存在着函数关系和相关关系 当一个或几个变量取定值时 另一个变量有确定的值与之对应 称为函数关系 可用Y f X 表示 当一个变量增大 另一个也随之增大 或减少 我们称这种现象为共变 或相关 correlation 两个变量有共变现象 称为有相关关系 相关关系不一定是因果关系 主要探讨线性相关 pearson相关系数 主要内容 一 散点图二 相关系数三 相关系数的假设检验 一 散点图 为了确定相关变量之间的关系 首先应该收集一些数据 这些数据应该是成对的 例如 每人的身高和体重 然后在直角坐标系上描述这些点 这一组点集称为散点图 作法 为了研究父亲与成年儿子身高之间的关系 卡尔 皮尔逊测量了1078对父子的身高 把1078对数字表示在坐标上 如图 用水平轴X上的数代表父亲身高 垂直轴Y上的数代表儿子的身高 1078个点所形成的图形是一个散点图 它的形状象一块橄榄状的云 中间的点密集 边沿的点稀少 其主要部分是一个椭圆 2 相关类型 3 作用 粗略地给出了两个变量的关联类型与程度 通过相关散布图的形状 我们大概可以判断变量之间相关程度的强弱 方向和性质 但并不能得知其相关的确切程度 为精确了解变量间的相关程度 还需作进一步统计分析 求出描述变量间相关程度与变化方向的量数 即相关系数 总体相关系数用p表示 样本相关系数用r表示 二 相关系数 变量的取值区间越大 观测值个数越多 相关系数受抽样误差的影响越小 结果就越可靠 如果数据较少 本不相关的两列变量 计算的结果可能相关 相关系数取值 1 r 1 相关系数的性质 r 表明两变量间相关的程度 r 0表示正相关 r 0表示负相关 r 0表示零相关 相关系数的性质 r 越接近于1 表明两变量相关程度越高 它们之间的关系越密切 r 的取值与相关程度 Pearson相关系数的计算 适用条件1 两变量均应由测量得到的连续变量 2 两变量所来自的总体都应是正态分布 或接近正态的单峰对称分布 3 变量必须是成对的数据 4 两变量间为线性关系 Pearson相关系数的计算 X的离均差平方和 Y的离均差平方和 X与Y间的离均差积和 离均差平方和 离均差积和的展开 例13 1 测得某地15名正常成年人的血铅X和24小时的尿铅Y 试分析血铅与24小时尿铅之间是否直线相关 15名自愿者的血铅和24小时尿铅测量值 mol L X 3 00 Y 3 17 X2 0 7168 Y2 0 7681 XY 0 7388n 15 0 9787 相关系数的假设检验 意义 上例中的相关系数r等于0 9787 说明了15例样本中血铅与尿铅之间存在相关关系 但是 这15例只是总体中的一个样本 由此得到的相关系数会存在抽样误差 因为 总体相关系数 为零时 由于抽样误差 从总体抽出的15例 其r可能不等于零 所以 要判断该样本的r是否有意义 需与总体相关系数 0进行比较 看两者的差别有无统计学意义 这就要对r进行假设检验 判断r不等于零是由于抽样误差所致 还是两个变量之间确实存在相关关系 相关系数的假设检验 步骤1 提出假设H0 p 0无关H1 p 0相关2 确定显著性水平 0 05如果从相关系数 0的总体中取得某r值的概率P 0 05 我们就接受假设 认为此r值的很可能是从此总体中取得的 因此判断两变量间无显著关系 如果取得r值的概率P 0 05或P 0 01 我们就在 0 05或 0 01水准上拒绝检验假设 认为该r值不是来自 0的总体 而是来自 0的另一个总体 因此就判断两变量间有显著关系 3 计算检验统计量 查表得到P值 拒绝H0 则两变量相关 否则 两变量无关 相关系数的假设检验 t检验法计算检验统计量tr 查t界值表 得到P值 例题 H0 0无关H1 0相关 0 05r 0 9787 n 15 代入公式v 15 2 13 查界值表 P 0 001 拒绝H0 认为血铅与尿铅之间有正相关关系 三 相关注意事项 线性相关的前提条件是X Y都服从正态分布 双变量正态分布 当散点图有线性趋势时 才可进行线性相关分析必须在假设检验认为相关的前提下才能以r的大小判断相关程度相关关系并不一定是因果关系 有可能是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论