现代分析测试技术电磁波与物质波的衍射理论.ppt_第1页
现代分析测试技术电磁波与物质波的衍射理论.ppt_第2页
现代分析测试技术电磁波与物质波的衍射理论.ppt_第3页
现代分析测试技术电磁波与物质波的衍射理论.ppt_第4页
现代分析测试技术电磁波与物质波的衍射理论.ppt_第5页
已阅读5页,还剩119页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第七章电磁波与物质波的衍射理论 2 7 1衍射的概念与原理 入射的电磁波 X射线 或物质波 电子波 与周期性的晶体物质发生作用 在空间某些方向上发生相干增强 而在其他方向上发生相干抵消 这种现象称为衍射 散射波干涉现象 衍射是入射波受晶体内周期性排列的原子的作用 产生相干散射的结果 衍射理论是一切物相分析的理论基础 3 7 1 1X射线衍射产生的物理原因 X射线与物质作用时发生散射作用 主要是电子与X射线相互作用的结果 X射线光子与外层弱束缚电子作用后 这些电子将被撞离原来运行方向 入射X光子损失部分能量 造成其散射X射线波长不同 位相也不存在确定的关系 是一种非相干散射 X射线与内层电子相互作用后却可以产生相干增强的衍射 可分三个层次来理解 4 机制 电子受X射线电磁波的交变电场作用将在其平衡位置附近产生受迫振动 而且振动频率与入射射线相同 此受迫振动的电子本身成为一个新的电磁波源 发射出的散射电磁波频率与入射波相同 即散射是一种弹性散射 没有能量损失 1 电子对X射线的弹性散射 5 由于每个原子含有数个电子 所以每个原子对X射线的散射是多个电子共同作用的结果 理论的推导表明 一个原子对入射波的散射相当于f sin 个独立电子处在原子中心的散射 即 将原子中的电子简化为集中在原子中心 只是其电子数不在是Z 而是f sin 2 原子对X射线的弹性散射 6 当电磁波照射到晶体中时被晶体内的原子散射 即从每一个原子中心发出一个圆球面波 由于原子在晶体中是周期排列的 使得在某些方向的散射波的位相差等于波长的整数倍 散射波之间干涉加强 形成相干散射 从而出现衍射现象 3 晶体对X射线的相干衍射 7 7 1 2电子衍射产生的物理原因 1 卢瑟福散射理论忽略了核外电子对核的屏蔽效应 它可近似地描述电子的弹性散射和非弹性散射 与原子核作用 弹性散射与核外电子作用 非弹性散射 8 入射电子在物质中的弹性散射大于非弹性散射Z倍 原子序数Z越大弹性散射部分就越重要 反之 非弹性散射就越重要 9 当电子与晶体作用时 电子受到原子集合体的散射 在弹性散射的情况下 某些方向的散射波的位相差等于波长的整数倍 散射波之间干涉加强 形成相干散射 从而出现衍射现象 电子受到试样的弹性散射是电子衍射图和电子显微像的物理依据 它可以提供试样晶体结构及原子排列的信息 2 晶体对电子的衍射作用 10 与X射线相比 电子受试样强烈散射这一特点 即 电子衍射强度比X射线高106 108倍 使得在TEM可以在原子尺度上看到结构的细节 11 发生衍射 样品结构信息 衍射方向 衍射强度 12 1 布拉格方程式2 厄瓦尔德图解 1912年英国物理学家布拉格父子导出了一个决定衍射线方向的形式简单 使用方便的公式 常称为布拉格公式 布拉格公式给出了衍射角2 晶面间距d和X射线波长 之间的关系 7 2衍射方向 13 A 晶体是由许多平行等距的原子面层层叠合而成的 例如 可以认为晶体是由晶面指数 hkl 的晶面堆垛而成的 晶面之间的距离为dhkl 简写为d B 假定入射线的方向为I 其中某一束衍射线的方向I 为了处理问题方便 找一组与入射线和衍射线夹角相等的晶面 hkl 把衍射线看成是这组晶面的反射线 然后推出布拉格公式 两个前提条件 布拉格方程是弹性散射 入射方向 散射方向比较对称 所以可以用 反射 来处理 14 同一层晶面相邻原子反射线之间的光程差 如晶面A上P原子和K原子散射线光程差 A C AD AA cos AA cos 0若同一层晶面相邻原子光程差为零 散射线相互加强 15 晶面A上P原子和晶面B上K原子散射线的光程差为 SA A T 2d sin 所以 2d sin 相邻两层平行晶面上原子反射线之间的光程差 如果 2d sin n 散射波互相加强 产生衍射 16 布拉格公式 2d sin n 为布拉格角 n为衍射级数 2 为衍射角 在满足布拉格公式的所有晶面上的所有原子散射波的位相完全相同 振幅互相加强 在与入射线成2 角的方向上就会出现衍射线 而在其它方向的散射线的振幅互相抵消 x射线的强度减弱或者等于零 把强度相互加强的波之间的作用称为相长干涉 而强度互相抵消的波之间的作用称为相消干涉 17 1 衍射是一种选择反射一束可见光以任意角度投射到镜面上时都可以产生反射 不受条件限制 但是 一束X射线投射到原子面上 只有当 d三者之间满足布拉格方程时才能发生衍射 布拉格方程包含的意义 2 衍射花样和晶体结构具有确定的关系衍射花样可以反映出晶胞大小及形状变化 不同晶系的晶体 或者同一晶系而晶胞大小不同的晶体 其各晶面对应衍射线的方向不同 物相鉴定 18 布拉格方程讨论2d sin n 1 当X射线的波长和衍射面选定以后 可能有的衍射级数n也就确定了 因此它不是无限的选择反射 1 n 2d 2 由于晶体中原子所能散射的能量 仅占入射能量中很小的一部分 因此与入射光束相比 衍射光束的强度极其微弱 3 衍射是原子散射波相互干涉加强的结果 与反射有着本质的区别 但习惯上仍旧把它说成反射光束 反射面 反射级数 19 4 产生衍射的条件由布拉格方程2d sin n 得n 2d sin 1d n 2 n最小值为1 d 2即 只有晶面间距大于等于 2的晶面才能产生衍射 晶面间距小于等于 2的晶面 即使衍射角增大到90 相邻两晶面的光程差仍不到一个波长 始终处于干涉减弱 但 若d 2 会造成 角太小不容易被观察到 与入射线重叠 故衍射分析用入射波长应与晶体的晶格常数接近 20 5 对于晶体衍射来说 我们关心的是衍射斑点位置而不是级数 布拉格公式可以改写为2 d n sin 设d d n 则 2dsin 21 可以将任何级的衍射看作是晶面间距相当于前者1 n的虚构点阵面上的一级衍射来处理 这个晶面叫干涉面 其面指数为干涉指数 HKL 习惯上HKL与hkl混用 dHKL d hkl n H nh K nk L nl把n隐函在dHKL之中 布拉格方程变成为永远是一级反射的形式 这样对处理问题带来很大方便 2dsin 2d sin n 100 200 虚构点阵面 干涉面 22 6 布拉格公式与晶面间距公式联系起来 就可以得到该晶系的衍射方向 上式表明 衍射方向决定于晶胞的大小与形状 2dsin 正方 斜方 六方的情况参见P52 23 7 2 2厄瓦尔德图解另一种解决X射线衍射方向的方法1 厄瓦尔德图解的含义 取AO 2 以AO的中点O1为球心作一球面 该球称为厄瓦尔德球或衍射球 在球面上任取一点G OG可以用来描述参加衍射的晶面组 原因一 24 根据倒易矢量的定义 可以确定OG就是参与衍射的晶面组的倒易矢量 表示为 原因二 矢量OG平行于衍射晶面的法线 衍射矢量方程 25 衍射矢量方程表明入射线方向 衍射线方向和倒易矢量之间的几何关系 这种关系说明 要使 hkl 晶面发生反射 入射线必须沿一定方向入射 以保证反射线方向的矢量端点恰好落在倒易矢量Hhkl的端点上 即的端点应落在HKL倒易点上 26 2 厄瓦尔德图解的应用 可帮助确定哪些晶面参与衍射 1 对于单晶体 先画出倒易点阵确定原点位置O 2 以倒易点阵原点为起点 沿入射线的反方向前进距离1 找到厄瓦尔德球的球心O1 晶体的位置 3 以1 为半径作球 得到厄瓦尔德球 即在球面上的倒易阵点可以反射 不在球面上的倒易阵点一定不可反射 从球心O指向倒易点的方向是相应晶面反射线的方向 单晶体衍射的厄瓦尔德图解 27 粉末多晶衍射原理粉末试样是由数目极多的微小晶粒组成 这些晶粒的取向完全是无规则的 各晶粒中的指数相同的晶面取向分布于空间的任意方向 如果采用倒易空间的概念 则这些晶面的倒易矢量分布于整个倒易空间的各个方向 各等同晶面族的倒易点阵分别分布在以倒易点阵原点为中心的同心倒易球面上 多晶体衍射的厄瓦尔德图解 28 在满足衍射条件时 根据厄瓦尔德图解原理 反射球与倒易球相交 其交线为一系列垂直于入射线的圆 从反射球中心向这些圆周连线组成数个以入射线为公共轴的共顶圆锥 圆锥的母线就是衍射线的方向 锥顶角等于4 29 30 硅的粉晶衍射图谱 31 在了解倒易点阵的基础上 便可以通过爱瓦尔德球图解法将布拉格定律用几何图形直观的表达出来 即爱瓦尔德球图解法是布拉格定律的几何表达形式 32 衍射方向 衍射强度 布拉格方程 尔瓦尔德图 晶体结构分析 晶胞参数确定 衍射方向确定 物相鉴定 晶体中原子的种类和它们在晶胞中的相对位置 33 7 3衍射强度 X射线的强度 单位时间内通过与X射线传播方向相垂直的单位面积上的光子数目与光子能量的乘积 把X射线看成是电磁波时 和普通波的传播相同 单位时间通过单位面积的波的能量 能流密度 单位J m2 s 与波的振幅平方成正比 34 衍射强度理论包括运动学理论和动力学理论 前者只考虑入射波的一次散射 后者考虑入射波的多次散射 此处仅介绍有关衍射强度运动学理论的内容 X射线与电子波在与原子作用时的相干散射的机制略有不同 二者衍射强度的理论却大致相同 35 衍射强度涉及因素较多 问题比较复杂 一般从基元散射 即单电子对入射波的 相干 散射强度开始 逐步进行处理 计算一个电子对入射波的散射强度 涉及偏振因子 一个原子对入射波的散射强度 涉及原子散射因子 晶胞的衍射强度 涉及结构因子 晶粒的衍射强度 涉及干涉函数 将材料内所有晶粒的散射波合成 得到多晶体材料的衍射强度 衍射强度的确定 确定衍射线强度与原子位置之间关系的表达式 36 在实际测试条件下材料的衍射强度还涉及温度 吸收 等同晶面数因素对衍射强度的影响 相应地 在衍射强度公式中引入温度因子 吸收因子和多重性因子 获得完整的衍射强度公式 37 7 3 1电子对X射线的散射 只使用于X射线 原子对X射线的散射主要由其核外电子而不是原子核引起的 在各种入射波中 只有X射线的衍射是由核外电子相干散射引起的 当一束X射线碰到一个电子时 这个电子就成为一个新的X射线源 向四周幅射振动频率 波长 与原X射线频率相同的X射线 38 Ie 一个电子散射的X射线在P点的强度I0 入射X射线的强度e 电子电荷m 电子质量c 光速R 电场中任一点P到发生散射电子的距离2 散射角 散射线方向与入射X射线方向的夹角 汤姆逊公式 推理过程省略 着重分析结论 一个电子的衍射 X射线 R 一束非偏振入射波沿OY方向照射在电子上 设在空间上有任意一点P OP距离为R OP与OY夹角为2 则电子所散射的X射线在P点的强度由汤姆逊方程给出 39 1 散射X射线的强度很弱假定R 1cm 2 0处 Ie I0 7 94 10 262 散射X射线的强度与电子到观测点之间的距离的平方成反比3 不同方向上 散射强度不同平行2 0或180 散射线强度最大垂直2 90或270 散射的强度最弱4 一个电子对x射线散射强度是x射线散射强度的自然单位 偏振因子或极化因子 电子对X射线散射的特点 散射波的强度值取决于 1 cos22 2 即非偏振入射波收到电子散射 产生的散射波被偏振化了 大小与角度有关 故称 1 cos22 2为偏振因子或极化因子 40 7 3 2原子对X射线的散射 只使用于X射线 一束X射线照射一个原子 使原子中所有电子和原子核产生受迫振动 因原子核质量远远大于电子质量 因此原子核振动不可察觉 忽略不计 所以原子散射波是原子中各个电子散射波相互干涉合成的结果 1 理想 情况 所有电子都集中在一点上 Ea 原子散射波振幅Ee 单个电子散射波振幅Ia 原子散射强度Ie 单个电子散射强度 41 f是以一个电子散射波的振幅为度量单位的一个原子散射波的振幅 2 实际情况 原子散射因子 散射强度 1 0 如果一个电子散射波振幅为Ee 则原子散射波振幅为ZEe2 0 原子散射波振幅为fEe f Z 原子散射因子 理想 情况 实际情况 f Z 存在位相差 且位相差别随 增大而增大P56 42 1 当 0时 f Z 随着 的增大 原子中各电子的位相差增大 f减小 Z 2 当 一定时 越小 位相差加大 f也越小 2 Z越大 f越大 因此 重原子对X射线散射的能力比轻原子要强 原子散射因子f的大小与2 和原子序数有关 它们之间的关系一般用f sin 图 右图 来表示 特点是 43 7 3 3一个晶胞对X射线的散射 晶胞对入射X射线的散射波是晶胞中所有原子的散射波叠加的结果 研究晶胞对入射波的相干散射 应具体到晶胞内不同晶面的衍射 无论晶面的指数和取向如何 每一种晶面都包含了晶胞内所有的原子 即 晶胞内所有原子对由该晶面决定的衍射都有贡献 只是随晶面取向的不同 各原子的散射波的叠加效果不同 44 补充知识 波长相同而振幅和位相不同的散射波的合成 复数方法在复平面上 用一个向量的长度A代表波的振幅 用向量与实轴的夹角 表示波的位相 于是这个波向量可用三角函数形式表示为E Acos iAsin 根据欧拉公式 用更简单的指数函数形式写为E Aei 于是多个向量合成的新向量就可很容易地写成各个向量的和 45 1 一个晶胞对X射线的散射强度推导 则该晶胞的散射振幅为这n种原子叠加 假设该晶胞由n种原子组成 每个原子的原子散射因子分别为f1 f2 f3 fn 它们的散射波振幅为 f1Ee f2Ee f3Ee fnEe 单个电子的散射波振幅为Ee 各原子散射波的位相为 1 2 3 n 46 定量表征原子排布以及原子种类对衍射强度影响规律的参数 或 2 结构因子 F 47 晶面结构因子 一般我们测定的是晶体中某个晶面的衍射 因此我们需要确定某个晶面的的结构因子 可以证明 hkl晶面上的原子 坐标 xj yj zj 与原点处的原子经晶面反射后位相差 为 2 hxj kyj lzj 48 证明过程 P58 Rj在S方向上的分量与在S0方向上的分量之差 49 于是 hkl 晶面的结构因子为 该式反映了晶体结构中原子的种类 fj 个数 n和位置 xj yj zj 对晶面 hkl 衍射强度的影响 正是由于这个原因我们把F称为结构因子 即晶体结构对衍射的影响因子 X射线晶体结构分析中一个十分重要的公式 或 50 如果已知晶体中所有原子的种类和个数以及它们在晶胞中的相对位置 就可以通过上式计算出某晶面结构因子 从而计算出的它衍射线的强度 实际工作的程序恰好相反 一般我们通过实验测得某一晶面的衍射线的强度 得到Fhkl 然后经过各种计算方法 得到晶体中各原子的种类及其相对位置 从而确定晶体的结构 51 体心点阵 底心点阵 底心点阵和体心点阵 001 面衍射 系统消光 由于原子在晶体中位置不同或原子种类不同而引起的某些方向的衍射线消失 体心晶胞无 001 反射 3 系统消光与消光规律 52 布拉格方程 没有考虑原子位置的影响 是晶体产生衍射的一般条件 即满足布拉格方程只是可能产生衍射现象 并非一定有衍射发生 因此 它只是衍射的必要条件 而非充分条件 布拉格方程的缺陷 研究结果表明 晶体产生衍射的充分条件是结构因子不为零 即 53 对结构因子进行计算可以得出各种晶体结构类型x射线衍射时的点阵消光法则 如果计算得到Fhkl 0 说明虽然可能满足布拉格方程 但衍射强度为零 此时 未能观测到衍射现象 消光规律 布拉格方程 Fhkl 0 衍射 54 我们可以通过结构因子的计算得到这些系统消光的规律 补充知识 常用的几个复数运算的关系式 当n 偶数 en i 1当n 奇数 en i 1 结构因子的计算 55 1 同种原子的简单点阵的消光规律每个晶胞中只有一个原子 其位置在原点上 坐标为 000 fa为其原子散射因数 F 2与晶面指数无关 说明简单点阵的情况下 结构因子不受晶面指数hkl的影响 即任意指数的晶面都能产生衍射 F fae2 i hxj kyj lzj fae2 0 fa F 2 fa2 56 2 同种原子的体心点阵的消光规律单位晶胞中有两个同种原子 坐标分别为 000 1 2 1 2 1 2 即 当h k l为奇数时 相应的晶面都会发生结构消光 即这些晶面不产生衍射现象 57 因此 晶面指数h k l为奇数时对应的晶面 如 100 111 210 221 都会发生结构消光 不产生衍射现象 而 h k l为偶数时对应的晶面 如 110 200 211 220 310 222 均有反射 与这些反射面对应的倒易点组成了一个面心的倒易点阵 58 3 不同原子的体心点阵的消光规律 可见 与同类原子的体心晶胞不同 由于两原子的种类不同 原子散射因f子不同 当h k l为奇数时 结构因子不等于0 但减小了 59 4 同种原子的面心点阵的消光规律 作业 课后完成 5 同种原子的底心点阵的消光规律 60 四种基本类型点阵的系统消光规律 计算中并没有涉及晶胞的大小与形状 因此这些规律与晶胞的大小与对称性 晶系 无关 只与点阵类型有关 61 7 3 4晶粒衍射强度 一个晶粒对入射波的散射是晶粒中各晶胞散射波相互干涉合成的结果 晶粒的合成波也是对各晶胞的衍射波求和 62 晶粒内两个晶胞 设一个位于原点 0 0 0 另一任意晶胞为 m n p 整个晶粒发出的散射波的振幅等于每个晶胞散射波的累加 散射波光程差 7 23 将7 23式带入 F 晶胞结构因子 将7 23式带入 整个晶粒发出的散射波的振幅 Ec 63 G 2 干涉函数 干涉函数描述晶粒尺寸对散射波强度的影响 三个因子分别描述在空间三个不同的方向上衍射强度的变化 整个晶体衍射的强度Ic G1 G2 G3 G 2 G1 2 G2 2 G3 2 64 当N1 100时 几乎全部强度都集中在主峰 副峰的强度可忽略不计 函数的主极大值等于沿a方向的晶胞数N1的平方 晶体沿a轴方向越厚 衍射强度越大 主峰的底宽为2 N1 晶体沿a轴方向越薄 衍射极大值的峰宽越大 主峰越强 越窄 晶粒越大 N1 5 65 谢乐 Sherrer 公式 B 积分半高宽度k 谢乐常数 0 89t 晶粒尺寸 单位nm 入射X射线波长 衍射角 XRD分析晶粒尺寸的著名公式 晶粒变小时 衍射峰产生宽化 一般当晶粒小于10 4cm时 它的衍射峰就开始宽化 因此 此式适合于测定晶粒 10 5cm 即100纳米以下晶粒的粒径 当晶粒大小一定时 衍射峰的宽化是随 角而变化的 即B随 的增大而增大 66 7 3 5多晶体衍射强度 多晶体样品由数目极多的任意取向晶粒组成 各晶粒的取向是任意分布的 众多晶粒中的 hkl 面相应的各个倒易点将构成一倒易球 此球以倒易矢量长度为半径 r hkl 1 dhkl 称为 hkl 面的倒易球 67 由晶粒的衍射积分强度分析可知 衍射线都存在一个有强度的空间范围 即当 hkl 晶面反射时 衍射角有一定的波动范围 因此 倒易球与反射球的交线圆扩展成为有一定宽度的圆环带 实际情况 多晶体的 hkl 衍射积分强度 P62 68 7 3 6影响衍射强度的其他因素 1 多重性因子 2 吸收因子 3 温度因子 4 角因子 包括极化因子和罗仑兹因子 实际衍射强度分析中 还存在等同镜面组数目 温度 物质吸收等因素影响 因此需要在衍射强度公式中引入相应的修正因子 69 1 多重性因子 P 等同晶面 晶面间距 晶面上的原子排列规律相同的晶面多重性因子 P 等同晶面个数对衍射强度的影响因子在粉末或多晶条件下 等同晶面中所有成员都有相同机会参与衍射 在其它条件相同的情况下 等同晶面越多 对衍射强度的贡献就越大 多重性因数越大 100 P 6 111 P 8 110 P 12 立方晶系 如 70 各晶面族的多重因子列表 71 2 吸收因子A 修正样品因对X射线的吸收造成的衍射强度的衰减 由于试样的形状和衍射方向不同 衍射线在晶体中的穿行的路径不同 试样对X射线的吸收不同 对衍射线的影响当然也不同 因此 必需考虑这个因素 吸收因子的大小依实验的方法和样品的形状不同而异 72 吸收因子与衍射角有关 角越大 吸收越严重 对于吸收系数大的材料 只有从试样上端或下端衍射的衍射线才能被接收 行进路程不同 强度减弱的程度也不相同 圆柱状试样 吸收系数较小的材料 吸收系数较大的材料 73 平板状试样 平板状的试样主要在衍射仪中采用入射线与反射线均在同一侧 入射角与反射角均相等 当入射角较小时 X射线照射试样的面积较大 而深度较浅 反之当入射角较大时 照射试样的面积较小而深度较深 总体而言 试样中受照试样的体积大体相当 参与衍射的体积大致相同 吸收因子与 角无关 74 3 温度因子 e 2M 修正原子热振动给X射线的衍射强度带来的影响 与晶体所处温度及衍射角有关的函数 温度升高引起晶胞膨胀 d的改变改变导致2 变化可用以测定晶体的热膨胀系数衍射线强度减小使晶体的周期性受到一定的破坏 先前符合布拉格条件的相长干涉变得不完全 使背底信号增强产生向各个方向散射的非相干散射 把这种散射称之为热漫散射 强度随2 角而增大 温度的影响体现在 75 温度因子 温度因子的物理意义 一个在温度T下的热振动原子的散射因子 散射振幅 是该原子在绝对零度时原子散射因子的e M倍 f和f0分别是TK和0K时的原子散射因子 M 与原子偏离其平衡位置的均方位移有关的常数 一定时 温度T越高 M越大 e 2M越小 衍射强度减小 T一定时 衍射角 越大 M越大 e 2M越小 衍射强度减小 76 4 罗仑兹因子 罗仑兹因子是由粉末法的特点所决定的 粉末法样品是由许多细小的晶粒组成的 罗仑兹因子反映了样品中参与衍射的晶粒大小 晶粒的数目和衍射线位置对衍射强度的影响 77 7 3 6完整的多晶体试样衍射强度公式 78 实际应用中考虑的是衍射线的相对强度 即同一实验条件下同一物相中各衍射线之间的强度比 通常是与最强衍射线的比值 因此有些项可以约掉 德拜谢乐法相对强度Ir 衍射仪法相对强度 结构因子 多重性因子 角因子 吸收因子 温度因子 79 应用强度公式的几点说明 1 样品中晶粒必须随机取向 避免择优取向 如果试样中的晶粒存在择优取向 上述强度公式便失效 因为 某些方向上晶粒特别多 相应的强度便比正常的强度要大大增加 对片状或针状晶体的制样过程更要注意避免样品扰优取向的产生 2 避免衰减作用 晶体越接近完整 反射线积分强度减小的现象叫衰减作用 公式推导的条件是晶体具有理想的不完整结构 即 亚结构很小 随机取向 这种样品具有最大的反射能力 但若晶体结晶完整 亚结构会很大 其反射能力就很低 存在衰减作用 如果这种作用存在 强度公式便失效 为此 实验时粉末样品要尽量磨细 80 8 衍射谱的指标化 衍射线的指标化也称衍射谱标定 就是要从衍射谱判断出试样所属的晶系 点阵胞类型 各衍射面指数并计算出点阵参数步骤判断试样的晶系判断试样的晶胞类型 81 指数标定方法 按 角从小到大的顺序 写出sin2 的比值数列根据数列特点来判断判断顺序 先假定试样属于简单的晶系 若不是 则假定为更复杂的晶系 即立方晶系 四方晶系 六方晶系 棱形晶系 正交晶系 82 立方晶系的衍射谱标定 根据布拉格方程和立方晶系面间距表达式 可得 去掉常数项 可写出数列为 式中sin2 的角下标1 2等 就是实验数据中衍射峰从左到右的顺序编号 83 粉末衍射图谱示例 衍射角 衍射强度 84 由于h k l均为整数 它们的平方和也必定为整数 sin2 数值列必定是整数列 判断是否为立方晶系的充分和必要条件 实验操作测量衍射谱 计算sin2 写成比例数列找到一个公因数 乘以数列中各项 使之成为整数列 则为立方晶系 反之 非立方晶系 注意 在所得的整数中 若出现7 15 23等数时 应将所有线 2以消除这些数 因为h2 k2 l2 7 15 23 立方晶系的衍射谱标定 85 进一步判断根据整数列的比值不同 可判断其是简单 面心或体心结构 结构因子不同 根据sin2 可知h2 k2 l2 进一步可计算出各衍射峰对应的干涉面指数 立方晶系的衍射谱标定 86 简单立方 简单立方由于不存在结构因子的消光 因此 全部衍射面的衍射峰都出现 sin2 比值数列应可化成 从左到右 各衍射峰对应的衍射面指数依次为 100 110 111 200 210 211 220 300 310 311 87 体心立方 体心立方中 h k l为奇数的衍射面不出现 因此 比值数列应可化成 对应的衍射面指数分别为 110 200 211 220 310 222 321 88 面心立方 FCC结构因为不出现h k l奇偶混杂的衍射 因此 数值列应为 相应的衍射面指数依次为 111 200 220 311 222 400 331 89 课堂练习 某次实验测得数据如下 请标出是什么晶体结构 并计算出对应的晶面指数 答案 FCC 90 立方晶系标定的问题 体心立方和简单立方的区别是数列中是否可能出现7 体心立方可能出现7 但必须要 2处理 而简单点阵不会出现 因此 在标定这两种结构时 衍射线条数目不能少于8条 实际测量时受设备限制可能测不到8条衍射线 在实际测量时 某一条或几条衍射强度特别低的线条可能不会出现 可能导致判断错误 如数列为3 8 11 16 19 肯定不是简单立方 也不属于体心立方 数列中有奇有偶 因此 应为面心立方结构 但在实际测量时 没有出现4 200 12 222 因为结构因子太小 91 对于衍射线条数目少于8条的情况 还可以从多重因子来考虑 简单立方衍射花样的前两条线的干涉指数为 100 和 110 体心立方为 110 200 110 和 200 的P 6 110 的P 12 在简单立方中 第二条线比第一条线强 在体心立方中 第二条线比第一条线弱简单立方的衍射线条数目最多 比面心和体心要多几倍面心立方的衍射线成对线条和单线交替出现 立方晶系标定的问题 92 点阵常数的计算 标定的第三步是计算晶体的点阵常数a 93 习题1使用CuK 射线 1 5418 对等轴晶系的氯化钠粉末进行X射线衍射 得到的衍射峰的位置分别是 2 27 45 31 80 45 60 54 05 56 70 66 50 73 30 75 60 84 30 试将上述衍射峰进行指标化 并判定其空间格子类型 习题2用CuK 射线 对于下列结构的物质进行粉末衍射 试预测随着衍射角度的增加次序 衍射图上开始出现的三个衍射峰的2 值和对应的hkl值 1 简单立方a 3 00 2 面心立方a 5 628 写出推测过程 补充习题 94 发生衍射 样品结构信息 衍射方向 衍射强度 物相鉴定 95 End 96 R 试样到照相底片 或探测器窗口 观察点处的距离V 试样被入射x射线照射的体积VC 单位晶胞体积F 结构因子P 多重性因数 角因子A 吸收因数e 2M 温度因子 粉末试样X射线衍射线束的强度 97 1 晶粒大小对衍射线强度的影响 在实际X射线衍射实验中 通过衍射仪得到的衍射图表现为一个有一定宽度的峰 而不是一条理想的细小直线 在德拜图中看到的往往是一个有一定宽度的带 除X射线的单色性和平行性等因素会导致峰的宽化外 晶粒的大小是衍射峰宽化的重要因素之一 98 推导布拉格方程时 默认晶体是无穷大 它由无限个晶面组成 以致于任何不满足布拉格方程的X射线都不产生衍射线 对任何一个入射角不满足布拉格方程的X射线来说 晶体中的任何一个晶面的反射总可以找到一个与它的光程差为 2的晶面反射 使二者产生相消干涉 实际中 倘若晶体很小 即晶面数目有限时情况则不同 会出现本来不应该出现的衍射线 如 若相邻层的光程差为 8 但晶面体只有6层时 第2 3层的反射就不能抵消 于是就会出现本来不应该出现的衍射线 由于晶体很小 晶面的层数太少 不足以使所有晶面的反射全部抵消 产生不完全的相消干涉 1 晶体很薄时的衍射 99 若该晶体是一个理想晶体 1角不满足布拉格方程 它是不能产生衍射的 但由于晶体很小 其晶面的层数太少 不足以使所有的晶面的反射全部抵消 产生不完全的相消干涉 在稍微偏离主衍射线的方向上仍有一定的衍射强度 从而使衍射峰宽化 只有大到一定程度 各晶面的反射才能产生完全的相消干涉 全部抵消 使衍射强度等零 2 稍偏离布拉格角时的衍射 当入射X射线与晶面所构成的掠过角与严格的布拉格角有一个微小的偏差 1 时 如图中的B和B 100 与晶体的厚度有关如上所述 对m 1层的晶体来说 只有 大到使相邻层的光程差等于 m时 或者说第0层反射与第m层反射的光程差为 时 对入射线C或B 晶面的反射才能产生完全的相消干涉 使衍射强度为0 大到什么程度才能产生完全的相消干涉呢 101 2 参加衍射晶粒数目的影响 102 命题 1 满足布拉格方程 是否衍射线强度一定不为零 2 不满足布拉格方程 是否衍射线强度一定为零 103 A原子的坐标为 xj yj zj 经O和A两个原子散射 散射波在衍射方向光程差为 104 105 106 4 罗仑兹因子 罗仑兹因子 极化因子 罗仑兹极化因子 角因子 罗仑兹因子是由粉末法的特点所决定的 粉末法样品是由许多细小的晶粒组成的 罗仑兹因子反映了样品中参与衍射的晶粒大小 晶粒的数目和衍射线位置对衍射强度的影响 10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论