




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法练习题:1 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,在两个奇数之间,这样的五位数有多少个?练习题:.计划展出10幅不同的画,其中1幅水彩画,幅油画,幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为_2. 5男生和女生站成一排照像,男生相邻,女生也相邻的排法有种_十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 练习题:1 10个相同的球装5个盒中,每盒至少一有多少装法?_ 2 .求这个方程组的自然数解的组数_ 十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法? 练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为_十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_ 2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. 本题还有如下分类标准:十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? 2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十七.化归策略例17.:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?十八.数字排序问题查字典策略例18由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 解决排列类应用题的主要方法(1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列1一位老师和5位同学站成一排照相,老师不站在两端的排法()A450B460 C480 D5002排一张有5个歌唱节目和4个舞蹈节目的演出节目单(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例2要从5名女生,7名男生中选出5名代表,按下列要求,分别有多少种不同的选法?(1)至少有1名女生入选;(2)至多有2名女生入选;(3)男生甲和女生乙入选;(4)男生甲和女生乙不能同时入选;(5)男生甲、女生乙至少有一个人入选组合两类问题的解法(1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解用直接法或间接法都可以求解通常用直接法分类复杂时,考虑逆向思维,用间接法处理3某校开设A类选修课3门,B类选修课4门,一位同学从中选3门若要求两类课程中各至少选一门,则不同的选法共有()A30种B35种 C42种 D48种 例3有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表求解排列、组合综合题的一般思路排列、组合的综合问题,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准44个不同的球,4个不同的盒子,把球全部放入盒内(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?1(2012辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A33!B3(3!)3 C(3!)4 D9!2(2012新课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A12种 B10种 C9种 D8种3在“神九”航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A24种 B48种 C96种 D144种ABCD4.如图所示22方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中任何一个,允许重复若填入A方格的数字大于B方格的数字,则不同的填法共有()A192种 B128种 C96种 D12种5两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A10种 B15种 C20种 D30种6(2012山东高考)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A232 B252 C472 D484712名选手参加校园歌手大奖赛,大赛设一等奖、二等奖、三等奖各一名,每人最多获得一种奖项,则不同的获奖种数是()A123 B312 CA D1211108异面直线a,b上分别有4个点和5个点,由这9个点可以确定的平面个数是()A20 B9 CC DCCCC9将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排两名学生,那么互不相同的分配方案共有()A252种 B112种 C20种 D56种10从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有_种11如图M,N,P,Q为海上四个小岛,现要建造三座桥,将这四个小岛连接起来,则不同的建桥方法有_种12某公司计划在北京、上海、兰州、银川四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该公司不同的投资方案种数是_(用数字作答)13(2013武汉模拟)某车队有7辆车,现要调出4辆按一定顺序出去执行任务要求甲、乙两车必须参加,且甲车要先于乙车开出有_种不同的调度方法(填数字)14(2013宜昌模拟)某省高中学校自实施素质教育以来,学生社团得到迅猛发展某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为_(用数字作答)15已知10件不同的产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?16从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?17.编号为A,B,C,D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025除尘器配套设备采购合同范本
- 常州期末考试化学试题及答案
- 2025高考英语试题分类汇编:动词的时态、语态、情态动词、虚拟语气含解析
- 常德初三历史中考试卷及答案
- 2025简易货物运输合同范本
- 现代汉语语汇题目及答案
- 2025年高考化学试题分类汇编:物质结构与性质晶胞的分析与计算(含解析)
- 葡萄沟课件教学课件
- 2025购销合同终止协议示范文本
- 2025年3月生物技术习题库+答案
- 气象法律、法规讲稿一全课件
- GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定
- GB/T 39201-2020高铝粉煤灰提取氧化铝技术规范
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GB/T 20801.6-2020压力管道规范工业管道第6部分:安全防护
- GB/T 19355.2-2016锌覆盖层钢铁结构防腐蚀的指南和建议第2部分:热浸镀锌
- 核心素养视角下教师专业发展课件
- 企业信用信息公告系统年度报告模板:非私营其他企业
- 施工员钢筋工程知识培训(培训)课件
- 质量管理体系审核中常见的不合格项
- 共用水电费分割单模板
评论
0/150
提交评论