六年级奥数提高练习和解析(一).doc_第1页
六年级奥数提高练习和解析(一).doc_第2页
六年级奥数提高练习和解析(一).doc_第3页
六年级奥数提高练习和解析(一).doc_第4页
六年级奥数提高练习和解析(一).doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

六年级奥数提高练习和解析(一)六年级奥数提高练习及解析(一)(自然数)1、自然数1用了1个数字,自然数20用了2和02个数字,从自然数1到510共用了多少个数字 ?【解析】一位数1-9一共用了9个数字;二位数10-99中,有11-99共9个特殊的数,这样的数只用了1个数字,而其他的两位数每个都用了2个数字。于是一共用了2x(90-9)+9=171;三位数中,先考虑100-199的情况。其中,111用了1个数字;100,122199一共有9个数,每一个都用到了2个数字;101,121,131191一共9个数,每一个都用到了2个数字;其他的每一个都用到了3个数字。所以一共用了3x(100-9-9-1)+2x9+2x9+1=280.;同理,200-299中也用了280个,300-399用了280个,400-499用了280个。这时候,就已经用了280x4+171+9=1300。从500-510中还能用到3x9+2+2=31所以一共1300+31=1331个(相遇次数)2、甲,乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?【解析】10分钟两人共跑了(3+2)6010=3000 米 3000100=30个全程。我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。29共15次。(街道长度)3、甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?【解析】甲、乙相遇后4分钟乙、丙相遇,说明甲、乙相遇时乙、丙还差4分钟的路程,即还差4(75+60)=540米;而这540米也是甲、乙相遇时间里甲、丙的路程差,所以甲、乙相遇=540(90-60)=18分钟,所以长街长=18(90+75)=2970米。(解决问题)4、昨天大家帮助萧菲解决了她的一个疑问,告诉了萧菲她走楼梯共有61034种走法?萧菲想这个数这么大呀,是不是我的年龄24岁的倍数呢?如果不是这个数除以24余多少呢?亲爱的小朋友,你们可以回答她的这个疑问吗?【解析】610不是3的倍数,所以61034也不是3的倍数。因此这个数不能整除24。 61024=2510 610224余4 610324余16 610424余16 以后余数都是16,所以61034除以24余16。(桥长)5、一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?【解析】火车过桥所用的时间是2分5秒=125秒,所走的路程是(8125)米,这段路程就是(200米+桥长),所以,桥长为8125-200=800(米)(追及问题)6、有甲、乙、丙三辆汽车,各以一定的速度从A地开往B地,乙比丙晚出发10分钟,出发后40分钟追上丙;甲比乙又晚出发20分钟,出发后1小时40分钟追上丙,那么甲出发后需多少分钟才能追上乙?【解析】由已知条件可知,乙用40分钟所走的路程与丙用50分钟所走的路程相等;甲用100分钟所走的路程与丙用130分钟所走的路程相等。故丙用130分钟所走的路程,乙用了40(13050)=104 (分钟),即甲用100分钟走的路程,乙用104分钟走完。多用4分钟,由于甲比乙晚出发20分钟,所以甲出发500分钟才能追上乙。(追及问题)7、小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?【解析】爸爸骑车和小明步行的速度比是(1-3/10):(1/2-3/10)=7:2 骑车和步行的时间比就是2:7,所以小明步行3/10需要5(7-2)7=7分钟 所以,小明步行完全程需要73/10=70/3分钟。(发车时间)8、王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【解析】汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)12=(汽车速度+自行车速度)4得出:汽车速度=自行车速度的2倍.汽车间隔发车的时间=汽车间隔距离汽车速度=(2倍自行车速度-自行车速度)122倍自行车速度=6(分钟).(号码)9、有一天,带有数字3的号码忽然紧俏起来。拿出来300个号码,从1号到300号,片刻间所有带3的号码都被一抢而光,不带3的号码谁也不要。剩下的号码还有多少个呢?【解析】不带数字3的号码多,带3的少。可以先看在300个号码里有多少个含有数字3的,用总数减去带3的,剩下就是不带3的了。 百位数字含有3的,只有1个,就是300。 十位数字含有3的,是从30到39,从130到139,从230到239,共计30个。 个位数字含有3的,每连续10个号码里有1个,300个号码里有30个。但是其中的33、133和233在考虑十位数字时已经列进去了,不能重复,考虑个位数字时要把这3个去掉。 所以,含有数字3的号码个数是:1+30+30-3=58。 不含数字3的号码个数是:300-58=242。 答案是:还剩下242个号码。(小虎赛跑)10、小虎训练上楼梯赛跑,他每步可上1阶或2阶或3阶,这样上到16阶但不踏到第7阶和第15阶,那么不同的上法共有多少种?【解析】本题属于一道加法原理的一个题目,就是从第四个台阶开始,后一项的上法等于前三个台阶上法的和。第一阶只有1种,上第二阶有2种,第三阶4种(直接上1种+从第一阶上1种+从第二阶上2种),第四阶7种,第五阶13种,第六阶24种,第七阶0种,第八阶37种,第九阶61种,第十阶98种,第十一阶196种,第十二阶355种,第十三阶649种,第十四阶1200种,第十五阶0种,第十六阶1849种。(相距问题)11、甲乙两人在A、B两地间往返散步,甲从A、乙从B同时出发;第一次相遇点距B处60 米。当乙从A处返回时走了lO米第二次与甲相遇。A、B相距多少米?【解析】“第一次相遇点距B处60 米”意味着乙走了60米和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了360=180米,第二次相遇是距A地10米。画图我们可以发现乙走的路程是一个全程多了10米,所以A、B相距=180-10=170米。(分零食)12、大纸箱里有74只桔子,中等大小的纸箱里有200块饼干,小纸箱里有120颗糖。平均分发完毕,每种小食品都剩下些零头,纸箱里还有2只桔子、12棵糖和20块饼干。大班里共有多少位小朋友?【解析】带来74只桔子,还剩2只,发下去的是72只。可见大班小朋友的人数是72的约数。带来200块饼干,还剩20块,发下去的是180块。可见大班小朋友的人数也是180的约数。带来120颗糖,还剩12颗,发下去的是108颗。可见大班小朋友的人数又是108的约数。所以,大班小朋友的人数是72、180和108的公约数。3个数72、180和108的最大公约数是36,其余公约数都不超过18。由于发到后来剩下的零头里有20块饼干,可见小朋友的人数大于20。所以大班的小朋友共有36人。幸亏饼干剩得多,如果剩下的饼干只有17块,就不能确定人数是36个还是18个了。(工程问题)13、某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?【解析】由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3(3-2)2=6天,就是甲的时间,也就是规定日期方程方法:1/x+1/(x+2)2+1/(x+2)(x-2)=1解得x=6(规定时间)14、一项工作由甲、乙两人合作,恰可在规定时间内完成,如果甲效率提高三分之一,则只需用规定时间的六分之五即可完成;如果乙效率降低四分之一,那么就要推迟75分钟才能完成,请问:规定时间是多少小时?【解析】假设甲效率为“6”(不一定设1,为迎合分数凑成整数设数),原合作总效率为6+乙效率那么甲效率提高三分之一后,合作总效率为8+乙效率所以根据效率比等于时间的反比,6+乙效率:8+乙效率=5:6,得出乙效率为4原来总效率=6+4=10乙效率降低四分之一后,总效率为6+3=9所以同样根据效率比等于时间的反比可得:10:9=规定时间+75:规定时间解得规定时间为675分答:规定时间是11小时15分钟(运货物)15、一个运输队运送一批货,第一天,运了全部的30%,第一天和第二天运量的比是3:2,还剩520吨没运走,这批货原有多少吨?【解析】第一天运送30%,第一天与第二天运量比例是3:2,则第二天运了20%,共计50%,剩余50%,为520吨,故总共有520*2=1040吨(杯口)16、桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。【解析】要使一只杯子口朝下,必须经过奇数次翻转.要使9只杯子口全朝下,必须经过9个奇数之和次翻转.即翻转的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次翻转,翻转的总次数只能是偶数次.因此无论经过多少次翻转,都不能使9只杯子全部口朝下。被除数=2140+16=856。答:被除数是856,除数是21。(余数问题)17、把1至2005这2005个自然数依次写下来得到一个多位数123456789.2005,这个多位数除以9余数是多少?【解析】首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。解:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到2007能被9整除。所以答案为1(原数)18、有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.【解析】设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。先取d=3,b=9代入竖式的百位,可以确定十位上有进位。根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。再观察竖式中的十位,便可知只有当c=6,a=3时成立。再代入竖式的千位,成立。得到:abcd=3963再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。(补充条件,解决问题)19、同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。【解析】补充1:照这样计算,9个同学可以擦多少块玻璃?(1)每个同学可以擦几块玻璃?123=4(块)(2)9个同学可以擦多少块?49=36(块)答:9个同学可以擦36块。补充2:照这样计算,要擦40块玻璃,需要几个同学?答案与解析:(1)每个同学可以擦几块玻璃?123=4(块)(2)擦40块需要几个同学?404=10(个)答:擦40块玻璃需要10个同学。(行程问题)20、王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?【解析】本题相当于去的时候速度为每小时50千米,而整个行程的平均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间30060*2=10(小时),现在从甲地到乙地花费了时间30050=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.(推理问题)21、甲、乙两所学校的学生中,有些学生互相认识.已知甲校的学生中任何一个人也认不全乙校的学生,乙校的任意两名学生都有甲校中的一个公共朋友.问:能否在甲校中找出两个学生A、B,从乙校中找出三个学生C、D、E,使得A认识C、D,不认识E,B认识D、E,不认识C?说明理由.(认识是相互的,即甲认识乙时,乙也认识甲).【解析】如果选乙校学生中任意两个人为C、D,那么甲校中有认识C、D的人,设它为A.因为A认不全乙校学生,所以在乙校中有学生E,A不认识E.这时A认识C、D,不认识E.按这个思路,再考虑选B时有些麻烦.虽然对于乙校的D、E,可知甲校中有学生认识D、E,如果把甲校的这个认识D、E的人选为B.这个B可能认识C,这样就达不到题目要求了.之所以陷入上述困境,原因在于C、D在乙校中太任意了,在乙校中任选C、D,就可能使得最后甲校中的B选不出来,看来要选特殊一点的人.因为甲校学生都认不全乙校的学生,所以存在甲校的认识乙校学生数目最多的人(或认识乙校学生数目最多的人之一).选他为A.因为A认不全乙校学生,取A不认识的乙校的一名学生为E,设A认识的乙校的一名学生为D.对于D、E,在甲校中有一个人,设它为B,B认识D、E.因为B认识E,A不认识E,所以A、B不是同一个人.在A认识的乙校学生中,一定有B不认识的人,若不然,当A认识的乙校的任何一名学生都认识B时,B至少要比A多认识一个人E,这与甲校学生中认识乙校人数最多的人之一是A的假定矛盾.设在乙校中,学生C认识A而不认识B,这样就有:A认识C、D,不认识E,B认识D、E,不认识C.(整数拆分)22、整数的分拆:有多少种方法可以把6表示为若干个自然数之和?【解析】根据分拆的项数分别讨论如下:把6分拆成一个自然数之和只有1种方式;把6分拆成两个自然数之和有3种方式6=5+1=4+2=3+3;把6分拆成3个自然数之和有3种方式6=4+1+1=3+2+1=2+2+2;把6分拆成4个自然数之和有2种方式6=3+1+1+1=2+2+1+1;把6分拆成5个自然数之和只有1种方式6=2+1+1+1+1;把6分拆成6个自然数之和只有1种方式6=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论