功能材料复习资料新_第1页
功能材料复习资料新_第2页
功能材料复习资料新_第3页
功能材料复习资料新_第4页
功能材料复习资料新_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

功能材料复习资料新功能材料复习资料新 绪论功能材料的定义具有优良的电学 磁学 光学 热学 声学 力学 化学和生物学功能及其相互转化的功能 被用于非结构目的 的高技术材料 结合键原子 离子或分子 间的作用力 结合键分类化学键离子键 共价键 金属键物理键分子键 氢键 晶胞的定义在空间点阵中 能代表空间点阵结构特点的小平行六面 体 反映晶格特征的最小几何单元 整个空间点阵可由晶胞作三维的重复堆砌而构成 晶胞三条棱边的边长a b c及晶轴之间的夹角 称为晶胞 参数晶系根据晶胞的外形 即棱边长度之间的关系和晶轴夹角的情 况 将晶体分为七大晶系 1848年 法国晶体学家布拉菲 A Bravais 用数学方法证明只能有 14种空间点阵 a 简单晶胞7个只有在每个角上含有阵点b 复合晶胞7个除了每个角 外 晶胞内部或面上还含有阵点第一章导电材料复习导电材料按导 电机理可分为电子导电材料和离子导电材料两大类 电子导电材料的导电起源于电子的运动 电子导电材料包括导体 超导体和半导体 导体的电导率 10温度时 半导体的电导率为10就认为该材料基本 上不能导电 而称为绝缘体 离子导电材料的导电机理则主要是起源于离子的运动 由于离子的运 动速度远小于电子的运动速度 因此其电导率也远小于电子导电材料 的电导率 目前最高不超过10导体的能带结构所示有三种结构 a 类 有未充满的能带 能带间相互重叠 无禁带 b 类价电子充满下面的 能带 上面紧接着另一个空能带 无禁带 c 类有未充满的能带 该 能带与上面的空带间有禁带 但是不论何种结构 导体中均存在电子运动的通道即导带 a 类的导带由未满带 重带和空带构成 b 类的导带由空带构成 c 类的导带由未满带构成 电子进入导带运动均不需能带间跃迁 导体中的散射中心有两类 一类是晶格原子的热振动 与温度T有关 另一类是晶格缺陷 无相变时 一般与温度无关 不论何种温度 电阻率 均随温度升高而升高 相反 电导率 随温度升高而降低 这也是导体的一个特征 1911年Onnes HK在研究极低温度下金属导电性时发现 当温度降到4 20K时 汞的电 阻率突然降到接近于零 这种现象称为汞的超导现象 某些金属 金属化合物及合金 当温度低到一定程度时 电阻突然消失 把这种处于零电阻的状态叫做超导态 有超导态存在的导体叫做超 导体 超导体从正常态 电阻态 过渡到超导态 零电阻态 的转变叫做正常 超导转变 转变时的温度Tc称为这种超导体的临界温度 揭示出超导电性的微观本质的理论是由巴丁 库柏和施里弗三人建 立的BCS理论 Bardeen Cooper和Schrieffer BCS理论认为 在绝对零度下 对于超导态 低能量的电子 在费米球 内部深处的电子 仍与在正常态中的一样 但在费米面附近的电子 则在吸引力的作用下 按相反的动量和自旋 全部两两结合成库柏对 这些库柏对可以理解为凝聚的超导电子 从动量角度看 在超导基态中 各库柏对单个电子的动量可以不同 但 每个库柏对总是涉及各个总动量为零的对态 因此 所有库柏对都凝 聚在零动量上 当正常的金属载流时 将会出现电阻 因为电子会受到散射而改变动 量 使载流子沿电场方向的自由加速受到阻碍 而在超导体情况下 组成库柏对的电子虽然会受到不断地散射 但是 由于在散射过程中 库柏对的总动量维持不变 所以电流没有变化 呈 无阻状态 本征半导体能带结构下面是价带 由于纯半导体的原子在绝对零度时 其价带是充满电子的 因此是一个满价带 上面是导带 而导带是空的 满价带和空导带之间是禁带 由于它的价电子和原子结合得不太紧 其禁带宽度Eg比较窄 一般在1eV左右 价带中的电子受能量激发后 如果激发能大于Eg 电子可从价带跃迁 到导带上 同时在价带中留下一个空穴 空穴能量等于激发前电子的 能量 5S m 超导体的电导率为无限大 在温度小于临界 7 104S m 当材料的电导率 10 7S m时 2S m 大多都在100S m以下 半导体价带中的电子受激发后从满价带跃迁到空导带中 跃迁电子可 在导带中自由运动 传导电子的负电荷 同时 在满价带中留下空穴 空穴带正电荷 在价带中空穴可按电子运 动相反的方向运动而传导正电荷 因此 半导体的导电电子和空穴的运动 电子和空穴都是半导体中导 电的载流子 激发既可以是热激发 也可以是非热激发 通过激发 半导体中产生载 流子 从而导电 可分为元素半导体和化合物半导体 元素半导体又可分为本征半导体和杂质半导体 化合物半导体又可分为合金 化合物 陶瓷和有机高分子四种半导 体 按掺杂原子的价电子数分可分为施主型 又叫电子型或n型 和受主型 又叫空穴型或p型 前者掺杂原子的价电子多于纯元素的价电子 后者正好相反 按晶态分可分为结晶 微晶和非晶半导体 半导体中价带上的电子借助于热 电 磁等方式激发到导带叫本征 激发 满足本征激发的半导体叫本征半导体 本征半导体是高纯度 无缺陷的元素半导体 其杂质小于十亿分之一 个 利用将杂质元素掺入纯元素中 把电子从杂质能级 带 激发到导带上 或者把电子从价带激发到杂质能级上 从而在价带中产生空穴的激发 叫非本征激发或杂质激发 这种半导体叫杂质半导体 杂质半导体本身也都存在本征激发 因此杂质半导体有杂质激发 又 有本征激发 一般杂质半导体中掺杂杂质的浓度很小 如十亿分之一即可达到目的 A族元素 C Si Ge Sn 中掺以 A族元素 P As Sb Bi 后 造成掺杂 元素的价电子多于纯元素的价电子 其导电机理是电子导电占主导 这类半导体是n型半导体 在 A族元素掺以 A族元素 如B 时 掺杂元素价电子少于纯元素的 价电子 它们的原子间生成共价键以后 还缺一个电子 而在价带中产 生逾量空穴 以空穴导电为主 掺杂元素是电子受主 这类半导体称p型或空穴型或 受主型 杂质半导体的能带结构 a 是n型 逾量电子处于施主能级 施主能级 与导带底能级之差为Ed 而Ed大大小于禁带宽度Eg 因此 杂质电子比本征激发更容易激发到导带 而导带在通常温度下 施主能级是解离的 即电子均激发到导带 Eg与Ed相差近三个数量级 例如硅掺十亿分之一As时 其Eg为1 73 10 19J Ed为6 4 10 21J 锗掺十亿分之一Sb时 其Eg为1 15 10 19J Ed为1 6 10 21J b 是p型 其逾量空穴处于受主能级 由于受主能级与价带顶端的能隙Ea远小于禁带宽度Eg 价带上的电子 很易激发到受主能级上 在价带中形成空穴导电 非晶态半导体对杂质的掺入不敏感 非晶态半导体结构不具有敏感性 掺入杂质的正常化合价都被饱和 即全部价电子都处在键合状态 例如非晶锗或非晶硅中的硼都是三重 配位的 因此它在电学上表现为非激活状态 非晶态半导体由于它对杂质的不敏感性 因此几乎所有的非晶态半导 体 都具有本征半导体的性质 非晶态半导体由于它是非结晶性的 因此无方向性 所以没有结晶方 式 提纯 杂质控制等麻烦工艺 故非晶态半导体便于大量生产 并且价格低廉 非晶态半导体多制成薄膜 禁带宽度可在1 2 1 8eV之间调节 暗电导率较小 易于制成大面积薄膜 但其载流子寿命较短 迁移率小 因此 一般不作为电子材料 而作为光电材料 适用于太阳能电池 传 感器 光盘和薄膜晶体管等 广泛使用的半导体硅器件的工作温度不能超过200 而航空航天等 军事工业要求工作温度为500 600 半导体器件在高温工作时易被热击穿和烧坏 另外 由于本征激发产生的载流子浓度增加 造成稳定性恶化 而本征激发载流子浓度随禁带宽度Eg的增加而降低 因此 要研制Eg大和耐高温的半导体 目前深入研究的主要有碳化硅和人造金刚石膜两种 一般具有离子结构的材料都有离子电导现象存在 但大部分材料的离 子电导率都很低 达不到导电的要求 故离子电导材料一般指的是电 导率 10 4S m 且其电子电导对总电导率贡献可忽略不计的材料 又称快离子 导体 氧离子导体有荧石型和钙铁矿型氧离子导体 以ZrO2为基的固溶体为荧石型结构的氧离子导体 它是1900年最早 发现的 ZrO2基固溶体的导电主要是O2 离子 虽然它们的导电活化能高达0 65 1 10eV 按离子导电材料的导电活 化能 0 5eV这个指标来看 不能称为离子导电材料 但由于它们在高 温下有比较高的O2 离子电导 在科研和工业生产上已经得到实际应用 第二章介电材料介电材料又叫电介质 是以电极化为特征的材料 电极化是在电场作用下分子中正负电荷中心发生相对位移而产生电 偶极矩的现象 带电粒子在电场下作微小位移的性质称为介电性 一般介电陶瓷材料在电场下产生的极化可分为四种 即电子极化 离子极化 偶极子趋向极化和空间电荷极化 电子极化是在电场作用下 使原来处于平衡状态的原子正 负电荷 重心改变位置 即原子核周围的电子云发生变形而引起电荷重心偏 离 形成电极化 离子极化是处在电场中多晶陶瓷体内的正 负离子分别沿电场方向 位移 形成电极化 偶极子趋向极化是非对称结构的偶极子在电场作用下 沿电场方向 趋向与外电场一致的方向而产生电极化 空间电荷极化是陶瓷多晶体在电场中 空间电荷在晶粒内和电畴中 移动 聚集于边界和表面而产生的极化 通常极化是由以上四种极化叠加引起的 在晶体的32种对称点群中 有11种具有对称中心 晶格上为非极性原子或分子 在电性上完全中性的 称为各向同性 介电体 另外 有20种点群结构晶体 其结构上无对称中心的 称为压电晶 体 压电晶体中有10种点群的晶体是极性晶体 具有热释电性 称为热 释电晶体 热释电晶体中在外电场作用下能够随电场改变电偶极子方向的晶体 称为铁电晶体 电介质分子的极化需要一定的时间 完成极化的时间叫弛豫时间 其倒数称弛豫频率f 电子极化的f约1015Hz 相当于紫外频率 原子 离子 极化的f约1012 Hz 处于红外区 取向极化的f在100 1010Hz之间 处于射频和微波 区 在交变电场作用下 由于电场频率不同 极化对电场变化的反应也 不同 当f 100 1010Hz时 三种极化都可建立 当1010Hz f 1013Hz时 取向极化来不及建立 当1013Hz f 1015Hz时 离子极化也来不及建立 只有电子极化能 建立 这叫极化的滞后 因此 极化强度与交变电场的频率有关 铁电体指在某温度范围内具有自发极化且极化强度可以因外电场而 反向的晶体 铁电体具有电滞回线 铁电体还有一个特点就是它具有许多电畴 所谓电畴就是在一个电畴范围内永久偶极矩的取向都一致 因此 凡具有电畴和电滞回线的介电材料就称为铁电体 晶体的铁电相通常是由自发极化方向不同的区域 按一定规律组成 的 每一个极化区域称为铁电畴 分隔电畴的间界称为畴壁 当无外电场时 电畴无规则所以净极化强度为0 而当施加外电场时 与电场方向一致的电畴长大 而其他电畴变小 因此 极化强度随电场强度变大而变大 第三章压电材料没有对称中心的材料受到机械应力处于应变状态时 材料内部会引起电极化和电场 其值与应力的大小成比例 其符号取决于应力的方向 这种现象称为正压电效应 逆压电效应则与正压电效应相反 当材料在电场的作用下发生电极 化时 则会产生应变 其应变值与所加电场的强度成正比 其符号取决于电场的方向 此现象称为逆压电效应 压电效应产生的根源是晶体中离子电荷的位移 当不存在应变时电 荷在晶格位置上的分布是对称的 所以其内部电场为零 但是当给晶体施加应力则电荷发生位移 如果电荷分布不再保持对 称就会出现净极化 并将伴随产生一电场 这个电场就表现为压电 效应 只有那些原胞无对称中心的物质才有可能产生压电效应 所有铁电晶体在铁电态下也同时具有压电性 即对晶体施加应力 将改变晶体的电极化 但是 压电晶体不同时具有铁电性 石英是压电晶体 但并非铁电体 钛酸钡既是压电晶体又是铁电体 机电耦合系数k是一个综合反映压电晶体的机械能与电能之间耦合关 系的物理量 所以它是衡量压电材料性能的一个很重要参数 其定义为k 转化的机械能 静电场下输入的电能 逆压电效应 或k 机械能转化的电能 输入的机械能 正压电效应 机电耦合系数k是一 个无量纲的物理量 在所有高分子压电材料中 聚偏二氟乙烯 PVDF 具有特殊的地位 它不仅具有优良压电性 热电性和铁电性 而且还有优良的机械性 能 第四章热电材料所谓热电材料就是把热转变为电的材料 热电材料分为温差电动势材料 热电导材料和热释电材料 由两种不同的导体 或半导体 A B组成的闭合回路 当两接点保持 在不同温度T1 T2时 回路中将有电流I通过 此回路称热电回路 回路中出现的电流称为热电流 回路中出现的电动势EAB称为塞贝克电动势 此效应称为塞贝克效应 在热电回路中 正与两接点间的温度差而引起的塞贝克电动势相反 通电时 在回路中会引起两种热效应 珀尔帖和汤姆逊热效应 前者出现在电极的两个接头处 后者发生在两个电极上 珀尔帖热效应在热电回路的两个接头处 当电流I流过时将发生可逆 的热效应 即有 QII的吸收或释放 依电流的方向而定 其大小与 电流I和流通的时间 t成正比 即 QII ABI t式中的比例系数 AB称为珀尔帖系数 其大小等于接点处通过单位电荷时吸收 或释 放 的热量 这种可逆的温差电热效应由珀尔帖 Peltier 在1834年发现的 由于珀尔帖效应 会使回路中一个接头发热 一个接头致冷 实质上是塞贝克效应的逆效应 汤姆逊热效应在热电回路中 流过电流I时 在存在温度梯度dT dx 的导体上也将出现可逆的热效应 是放热还是吸热 依温度梯度和电 流的方向而定 热效应的大小 QT与电流I 温度梯度dT dx和通电 流的时间 t成正比 这种可逆的温差电热效应是由汤姆逊 Thomson 从理论上预言的 温差电动势材料常用的有铜 康铜 金 金铁 热释电材料实质为温敏材料 温度变化电导率变化较大 热释电材料是指当某些晶体受温度变化影响时 由于自发极化的变 化而在晶体特定方向上产生表面电荷 第五章光电材料光能转变为电能的一类能量转换功能材料 常用三种光电功能材料 1 光电子发射材料 2 光电导材料 3 光电动势材料光电子发射现象当光照射到材料上 光被材料吸 收产生发射电子的现象 光电子发射材料具有光电子发射现象的材料 对于半导体 价电子逸出体外的条件是价电子吸收光子的能量以后 从价带跃迁到导带 然后再向表面扩散 负电子亲和势材料的发射效率比正电子亲和势材料的发射效率高得 多 受光照射电导急剧上升的现象被称为光电导现象 具有此现象的材料叫光电导材料 又称作内光电效应材料或称为光敏材料 光照到半导体 或绝缘体 上 价带的电子接受能量 使电子脱离共价 键 当光的能量达到禁带宽度的能量值时 价带的电子跃迁到导带 因而 在晶体中产生一个自由电子和一个空穴 这是两种载流子 它们都参 与导电 由于光的作用产生的附加电导称之为光电导按光电导原理也可以反 过来了解禁带宽度 当光的能量增加到一定值时 光电导急剧上升 此时的光频 与禁带 宽度的关系为Eg h 式中Eg为禁带宽度 h为普朗克常数 为光电导急剧增加时的光频 在光照下 半导体p n结的两端产生电位差的现象称为光生伏特效应 具有此效应的材料叫光生伏特材料又称光电动势材料 光电动势的原理 简言之是光照下 在光电动势材料上形成阻挡层 两 面可以产生电动势 太阳能电池和光生伏特检测器都是光电动势材料的重要应用 一 半导体p n结的电子 空穴情况一个n型半导体与一个p型半导体接触 将会在结的p侧存在 自由空穴以及相等浓度的 电离受主杂质原子 这样才能保持电中性 在结的n侧存在自由电子以及相等数目的 电离施主杂质原子 载流子与受主和施主杂质原子处于热平衡 因此在晶体各处空穴浓度 与电子浓度之和为常值 符合质量作用定律 在每侧都存在低浓度的少数型载流子 图中夸大地表示法 与多数载 流子处于热平衡 聚集在p侧的空穴倾向于通过扩散均匀地分布满整个晶体 电子倾向 于从n侧扩散出去 但是扩散会破坏电中性 一旦发生载流子扩散就必将引起少量电荷转移 因而在p侧留下过量 电离受主原子 而在n侧留下过量地 电离施主原子 如图5 5 b 所示 由此产生的电荷偶极层就会出现一个自n区指向p区的电场 它阻止继 续扩散 维持两种载流子类型的分离 这种在p n结区附近由受主 离子与施主 离子产生的静电势梯度阻止扩散 这种p n结区电场称为内建电场 由于存在这种偶极层 晶体内的静电势在p n结区就出现一个突变 在偶极层中 正电层和负电层中的电子和空穴 即载流子 的数目都是 很少的 因此它的电阻很高 这一层称为阻挡层 阻挡层起到阻止电子 和空穴扩散的作用 有了阻挡层才能使扩散达到平衡 尽管有内建电场存在 但是在整个p n结中没有剩余的空穴和电子 因此p n结中并无外场电动势 外电场为零 二 光生电动势的产生对于上述情况 如果光照射到p n结的接触面时 情况就大不一样 这时p n结能够吸收光子 由于光激发而使电子和空穴激发 又由于有内建电场的存在 受到内建电场的作用 空穴将向p区移动而 积累 而电子将相反 向n区移动而积累 从而形成净空间电荷 这些空间电荷不能够越过阻挡层而复合 这样必将有电动势产生 在这种情况下 p n结就形成光电池 二 光电池的特征值1 开路电压Vo Vo是表示光电池在开路时的电压 也就是光电池的最大输出电压 2 短路电流Io Io是表示光电池在外电路短路时的电流 也就是光电池的最大电流 3 转换效率 转换效率 为光电池的最大输出功率与入射到光电池 结面上的辐射功率之比 即SIE 率入射到结面上的辐射功光电池 最大输出功率 5 5 式中I 光电流 E 光电动势 S 相关灵敏度 光入射通量 与禁带宽度有关 当禁带宽度Eg 0 9 1 5eV时 最高 因此 应该尽量选择这样大小的禁带宽度的材料做光电池 GaAs AlSb CdTe为材料制成的太阳能电池都可以达到最高的转换 效率 但是 AlSb易潮解 CdTe不易制成大面积的太阳能电池 而GaAs以及它 的固溶体是比较理想的光电池材料 4 光谱响应曲线光谱响应曲线是表示Vo IO 的关系曲线 它可表示在某波长下的开路电压 短路电流以及转换效率 因此这些 曲线也是表示光电池特征值的曲线 单晶硅太阳能电池的优点是其禁带宽度不大 Eg 1 07eV 因此实际 可达18 其光谱响应曲线与太阳的光谱响应曲线接近 因此转换效率高 单晶硅形成表面氧化层的折射率在硅与空气之间故反射损失小 其工 艺成熟 易掺杂 其缺点主要是价格昂贵 使用寿命不太长 非晶硅制造太阳能电池是一种有前途的方法 虽然它的效率还很低 约10 左右 但是自从解决了掺杂工艺 非晶硅太阳能电池发展很快 其优点是工艺简单 对杂质的敏感性小 并且可以制成大尺寸 价廉 其缺点是转换效率不高 不够稳定 第六章磁性材料抗磁性物质的磁化率为 10 5 10 8 顺磁性 反铁磁性 亚铁磁性和铁磁性物质的磁化率分别为10 3 10 6 10 3 10 5 1 104和1 105 因此抗磁性物质表现为抗磁 顺磁性和反铁磁性 物质表现为弱磁 亚铁磁性和铁磁性物质表现为强磁 所谓软磁材料就是矫顽力很低 0 8KA m 的磁性材料 亦即当材料 在磁场中被磁化 移出磁场后 获得的磁性便会全部或大部丧失 软磁材料的主要磁特性是 矫顽力和磁滞损耗低 电阻率较高 磁 通变化时产生的涡流损耗小 高的磁导率 有时要求在低的磁场下 具有恒定的磁导率 高的饱和磁感应强度 某些材料的磁滞回线 呈矩形 要求高的矩形比 铁损是指铁磁性材料在交变磁场中反复磁化所消耗的功率 铁损一般由磁滞损耗和涡流损耗和剩余损耗所组成 通常 铁磁性材料磁化时 出现磁滞现象 每磁化一周所消耗的能量正 比于磁滞回线的面积 这种能量损失称为磁滞损耗 按照电磁感应定律 铁磁材料在交变磁场中磁化 材料内磁通量发生 变化时 在磁通的周围会产生感应电动势 因铁磁材料是导电物质 感 应电动势将在垂直于磁通方向的截面上感应出闭合的涡流电流 由它所引起的焦耳损失称为涡流损耗 假定材料的磁导率始终是一常数 涡流损耗可用下式计算 102m22106 4 1 eBdfP W m3 6 4 式中f 频率 Hz d 材料厚度 mm Bm 最大磁感应强度 T 电阻率 cm 经过换算 Pe的单位可以由W m3转换成W kg 例如 P1 5 50为2 34W kg 是指最大磁感应强度为1 5T 频率为5O Hz时 每公斤材料的铁损为2 34W 提高电阻率可降低涡流损耗 剩余损耗包括弛豫损耗 畴壁共振损耗和自然共振损耗 矫顽力Hc软磁材料在对称周期磁化条件下 磁感应强度B O时所相应 的磁化场强度称为矫顽力HC 饱和磁感应强度BS在磁化场足够强的情况下 软磁材料可能达到的最 大磁感应强度 称为饱和磁感应强度 剩余磁感应强度Br软磁材料经一定强度的磁场磁化后 再将磁场强度 减至零 此时材料内所剩的磁感应强度 称为剩余磁感应强度 通常简 称为剩磁Br Br不仅与材料本身有关 而且与材料的磁化过程有关 复数磁导率 在交变电磁场中要用复数磁导率 为 j 其中实部 称弹性磁导率 虚部 称粘性磁导率 而实部 和虚部 之比 即 tan 称为损耗角 tan 称为损耗角正切或损耗因子 常用的软磁材料有纯铁 硅钢片 铁镍合金 软磁铁氧体等 所谓电工用纯铁 是一种含碳量低 含铁量99 95 以上的软钢 它在平炉中进行冶炼时 用氧化渣除去碳 硅 锰等元素 再用还原 渣除去磷和硫 出钢时在钢包中加入脱氧剂而得 这种电工用纯铁在退火状态 起始磁导率 i为300 500 0 最大磁 导率 m为6000 12000 0 矫顽力Hc为39 8 95 5A m 电工用纯铁只能在直流磁场下工作 在交变磁场下工作 涡流损耗 大 如果在纯铁中加入0 38 4 5 硅 使之形成固溶体 可以提高材料 电阻率 减少涡流损耗 这种材料称为硅铁合金 或者称电工用硅钢片 纯铁中加入硅后 使材料的物理性质发生变化 表现在 1 热导率 改变 铁的热导率在加入硅后剧烈地降低 2 电阻率 改变 随着含硅量增加到5 硅铁合金的电阻率急剧上升 3 相对密度d改变 随着含硅量的增加 比重几乎是直线地降低 含3 Si的Si Fe合金片由于其饱和磁通密度高 是电力变压器和配电变压器中大量 采用的材料 镍铁合金主要是含镍量为30 90 的镍铁合金 通常称坡莫合金 镍铁合金由Fe Ni Mo Cr Cu等元素组成 镍铁合金有很高的起始磁导率 i和最大磁导率 m 电阻率在50 cm左右 BS较低 软磁铁氧体是铁氧体材料中的一种 是一种容易磁化和退磁的铁氧体 其特点是起始的磁导率高 矫顽力小 损耗小 使用频率可达高频 超 高频范围 软磁铁氧体属于半导体类 电阻率为102 1012 cm 常用的软磁铁氧体有镍锌铁氧体和锰锌铁氧体 镍锌铁氧体在高频领域中是很重要的材料 由于电阻率高 可用于1 200MHz的频率范围 在使用频率范围内 要求这种材料有尽可能小的 磁损耗及起始磁导率的温度系数 锰锌铁氧体属于高导磁 低频 铁氧体 电阻率比较低 102 cm 适用于1MHz以下硬磁材料是具有强的抗退磁能力和高的剩余磁感应 强度的强磁性材料 又称永磁材料 表征硬磁材料性能的主要参数是剩余磁感应强度Br 矫顽力HC和最 大磁能积 BH max 三者愈高 硬磁材料性能越好 由此引起这类材料具有大的磁滞损耗 磁性材料的硬和软 也可以是指机械手段 因为任何提高磁性材料机 械强度的手段 也往往产生出比较硬的磁性材料 更为确切的方法是用磁滞回线形状区分硬磁材料和软磁材料 磁性材 料的软硬程度可以用Br Hc乘积来度量 硬磁材料主要用于制造永久磁铁 永久磁铁一旦经外加磁场饱和磁化后 如果撤去外加磁场 在磁铁两 个磁极之间的空隙中便可产生恒定磁场 对外界提供有用的磁能 然而 与此同时 磁铁本身将受到退磁场作用 退磁场的方向和原来外 加磁场的方向是相反的 因此 永磁体的工作点将从剩磁Br点移到磁 滞回线第二象限 即退磁曲线的某一点上 永久磁铁的实际工作点用D 表示 由此可见 硬磁材料性能好坏 应该由退磁曲线上的有关物理量来衡 量 剩余磁感应强度Br 表观磁感应强度BD 矫顽力Hc 最大磁能积 BH max 回复磁导率 rev等都是硬磁材料的特征值 永磁材料的矫顽力Hc有两种定义 一个是使磁感应强度B O所需的磁 场值 常用BHC或HC表示 一个是使磁化强度M O所需的磁场值 常用MH c表示 永磁材料矫顽力的大小主要由各种因素 如磁各向异性 掺杂 晶界 等 对畴壁不可逆位移和磁畴不可逆转动的阻滞作用的大小来决定 阻滞越大 矫顽力就越大 退磁曲线的凸出程度可用凸出系数 表示 BH max Br Hc硬 磁材料可分成以下几类 铸造硬磁合金 可变形硬磁合金 稀土 硬磁合金 硬磁铁氧体 粘结磁体等 稀土硬磁合金包括稀土 钴和稀土 铁系金属间化合物 为硬磁材料中性能最高的一类 最早的稀土硬磁合金是稀土钴磁铁 可以用RxMy表示 R属于周期表的第3族 包括从原子序号为57 La 到71 Lu 和39 Y 表 示的稀土元素 M表示铁族的过渡元素 稀土钴磁铁的Br值大致与铝镍钴合金的接近 其矫顽力约为铁氧体的 三倍 稀土钴磁铁还具有小体积可以产生大磁场 稳定性好 不易受外磁场 的影响 高温下使用不会退磁等特点 这类材料的种类划分上人们习惯于把已批量生产的RCo5称为第一代 永磁材料 R2Co17称为第二代永磁材料 例如钐钴合金 Sm Co5 BH max为195 9 222 9kJ m3 Br为l000mT Hc为788 2KA m 与第一代永磁材料相比 第二代永磁材料用Fe Cu Zr取代部分Co 如Sm Co 0 61Mn0 12Zr0 01Hf0 01Fe0 15 8 2合金性能好 Sm含量 少 成本低 BH max为297 7kJ m3 Br为1260mT 对于前两代稀土永磁合金而言 各组分配比是提高材料磁性能的关键 在价格上由于Co的原因往往较高 1983年日本首先报导的用Nd取代Co的Nd Fe B合金在磁性能上及价格上都优于稀土钴磁铁材料 称之为第三代永 磁材料 Nd Fe B材料的出现 立即引起广泛关注 1985年日本生产的Nd Fe B材料 其 BH max为302 5kJ m3 1990年我国研制的Nd Fe B材料 BH max突破了39O kJ m3 第三代稀土永磁材料的最大缺点是居里温度较低 温度稳定性和环 境稳定性较差 目前主要有通过材料的化学成分和通过材料的表面处理两种抗腐蚀 方法 处于研究阶段的第四代永磁材料主要有Sm2Fe17Cx Sm2Fe17Nx Sm Fe Ti等 BH max的理论值高达45O kJ m3 铁氧体是铁元素与氧化合形成的各种类型的化合物 广义而言 铁氧体就是磁性氧化物或磁性陶瓷 铁氧体的起始磁化率和饱和磁感应强度一般都低于软磁材料 但其电 阻率却高几个数量级 大大降低了涡流损耗 因此 铁氧体制成的器件可用于非常高的频率 达到并包括微波范围 实用的铁氧体大多数是软磁的 也有些铁氧体 如钡铁氧体和锶铁氧 体为硬磁的 铁氧体的特征值参考软磁材料和硬磁材料外 还有电阻率和介电常数 非晶态磁性合金的一个很重要特征值是饱和磁致伸缩系数 s 所谓磁致伸缩就是磁性材料磁化时发生线度的变化 s是该变化程 度的度量 一般来说 s越小 非晶态合金的磁性能越好 非晶态磁性合金的应用 目前国内外都有较快的进展 根据非晶态磁性合金的磁性能的不同 可以广泛应用于电力供应 磁 芯 电感元件 传感器 磁屏蔽等诸多方面 例如用非晶态合金制作的电机可使铁芯损耗降低90 左右 用非晶态 合金制作的开关电源 其重量和体积可大大减小 压磁效应是力学形变和磁性状态之间存在的机械能和磁能之间的转 换效应 其逆效应称之为磁致伸缩效应 所谓磁性液体是指铁磁性物质的极微小的颗粒表面吸附上一层表面 活性剂 使其均匀稳定地弥散在某种基液之中 形成一种弥散溶液 磁性液体由磁性微粒 表面活性剂和基液组成 表面活性剂的选用主要是让相应的磁性微粒能稳定地悬浮在基液中 第八章透光和导光材料透光材料包括透可见光 波长0 39 0 76 m 红外光 波长1 1000 m 和紫外光 波长0 01 0 4 m 的材料 透过率T透过率T为透射光强IT与入射光强I0之比 也称透光率 0IITT 8 1 如图8 1所示 入射光强Io 射进介质和光强为 1 R Io 反射掉部分光强为IoR 射进介质的光在穿过介质时被吸收一部分后 达到介质另一面的光强 为Io 1 R e al 又被反射回介质内的光强为IoR 1 R e al 最后透射出介质的光强IT为Io 1 R 2e al 因此 按式 8 1 透过率T为T 1 R 2e al 8一2 式中 吸收系数 L 介质长度 一般取介质长度为1O mm的T值作为标准 平均色散系数 D透光材料中光学玻璃通常按折射率nD和平均色散系 数 D这两个光学常数进行分类 平均色散系数的表示式为CFDDnnn 1 8 8 式中 D一一平均色散系数 也称阿贝数 nF一一材料对标准谱线F 4861 3A 的折射率 nC一一材料对标准谱线C 6562 7A 的折射 率 nD一一材料对标准谱线D 5892 9A 的折射率 nF nC一一平均色散 也称中部色散 对于玻璃 D 50称冕玻璃 D 50称火石玻璃 透可见光的材料常用的有玻璃和高聚物两大类 玻璃材料的透过率最高 可高达98 以上 折射率范围大 1 44 1 9 4 色散系数范围大 D 20 90 光学稳定性好 耐磨损 玻璃材料的缺点是密度大 2 27 6 26g cm3 耐冲击强度低 加工困 难 制造周期长 尽管如此 目前玻璃仍是制造各种光学元件特别是高 精光学元件的 最主要的材料 高聚物透光材料的优点为重量轻 密度为0 83 1 46g cm3 成本低 制造工艺简单 不易破碎 透光高聚物也有很多缺点 如折射率范围窄 热胀系数 双折射和色 散大 耐热 耐磨 硬度 耐湿和抗化学性能差 光通信中用于传播光信息的光学纤维所用的材料 称为光纤材料 又 称为光波导纤维材料 一切光纤的工作基础都是光的全内反射现象 光纤材料按结构可分为包层型和自聚焦型两种 前者的折射率在皮和 芯界面上呈突跃变化 后者的折射率则随半径呈梯度指数变化 光在纤维中传输有一定的传输模式 光学上把具有一定频率 一定的偏振状态和传播方向的光波叫做光波 的一种模式 或称为光的一种波型 传输模式是光学纤维最基本的传输特性之一 因此根据模式可分为单 模光纤和多模光纤两种 所谓单模光纤就是一种光学纤维只允许传输一个模式的光波 而多模 光纤则为一种光纤允许同时传输多个模式的光波 光学纤维具有均匀的芯子 半径为r 折射率为n1 和均匀的包层 折射 率为n2 n2 n1 通过这种纤维的光线有子午光线和斜光线两种 所谓子午光线就是在一个平面内弯曲进行的光线 它在一个周期内和 光学纤维的中心轴相交两次 斜光线则为不通过光学纤维的中心轴的 光线 作为子午光线行进的条件为22210sinnn 数值孔径NA习惯上把22 21nn 称之为光学纤维的数值孔径NA 即2221nnNA 根据子午光线行 进的条件 NA值越大 0可以越大 因而有较多的光线进入芯子 但NA太大时 对单模传输不利 因为它易激发光的高次模传播方式 1 传输损耗Q传输损耗Q指光在纤维中传输途中的损耗 用下式表示 1 2log10IIQ dB km 8 12 式中I1 入射光强 I2 出射光强 Q 传输损耗 dB km Q 越大 光信息传播的距离就越短 Q 越小 光信息传播的距离就越 远 Q值是衡量光学纤维通信介质质量好坏的一个最重要的指标 形成光学纤维传播损耗的机理有吸收损耗 本征散射和波导散射三 种 吸收损耗是一个重要的损耗 又可分本征吸收 杂质吸收和OH 离子吸收 本征吸收是物质的固有吸收 是组分原子振动产生的吸收 位于8 12 m的红外区域和一个紫外波段 杂质吸收主要有Cu2 V3 Cs3 Mn3 Fe2 C02 和Ni2 等杂质 它的吸收峰位于可见和红外区域 当原料经过多次精制后 金属杂质的吸收几乎完全消除 这时OH 离子的吸收就成为一种重要的杂质吸收损耗 在熔融石英玻璃中 OH 的吸收带位于0 5 1 O m波段 OH 的基本吸收峰位于2 7 m附近 0 95 m和0 72 m是振动损耗的二次和三次谐波 本征散射是物质散射中最重要的 又称为瑞利散射 它是由玻璃熔制 过程造成的密度不均匀而产生的折射率不均匀所引起的散射 它与波 长的四次方成反比 这种损耗随波长的增加而很快减小 另外 掺杂不均匀 如扩散不均匀 也能引起散射 产生损耗 波导散射是由波导的结构缺陷产生的 如波导芯的直径有起伏 界面 粗糙 凹凸不平 就会引起传导模的附加损耗 即波导散射损耗 传输带宽是影响信息传输能力的一个重要因素 在光纤通信中 传输以光脉冲方式进行 信息通过调制方式加到光频 载波上 把载波光按信息要求调制成一个光脉冲 光脉冲的调制频率 愈高 它能传输的信息容量也愈大 实际上 经输送的光脉冲 方波窄脉冲 传输一段距离后发生畸变和展 宽 成钟形的方波脉冲 展宽的结果使光脉冲波型重叠 结果分辨不 出所携带的信息 另一方面 能否无限制地增高光脉冲的调制频率 提高传输的信息容 量 不能 因为光学纤维的传输带宽受到材料色散 模式色散和构造 色散的限制 材料色散是指不同波长的光在介质中的折射率不一样 用数学式表示为n f 8 13 式中n 材料折射率 波长 该式说明介质的折射率是波长的函数 因为即使是单色光也都有一定 的谱线宽度 如He Ne激光的6328 的谱线宽度为10 7 模式色散是指不同模式的光脉冲在光学纤维中传播速度不同所产生 的传输时间差 构造色散是指由光纤结构上的原因引起的光传播速度的变化 在多模光纤中 限制传输带宽的主要因素是模式色散 在单模光纤中 影响传输带宽的主要因素是材料色散 由于石英光纤的工作波段为0 85 m和1 30 m 它目前达到的损耗已接近其极限值 降低的空间已很小 为了实现超远距离通信 必须使光纤在更长波长的红外窗口波段工作 这样才能得到更低的损耗 因此 研究红外光纤已成为当今光纤研究 的主要方向 第九章发光材料发光材料品种很多 按激发方式发光材料可以分为 1 光致发光材料 发光材料在光 通常是紫外光 红外光和可见光 照射下激发发光 2 电致发光材料 发光材料在电场或电流作用下的激发发光 3 阴极射线致发光材料 发光材料在加速电子的轰击下的激发发 光 4 热致发光材料 发光材料在热的作用下的激发发光 5 等离子发光材料 发光材料在等离子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论