




已阅读5页,还剩64页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
晶体结构的密堆积原理 1619年 开普勒模型 开普勒从雪花的六边形结构出发提出 固体是由球密堆积成的 开普勒对固体结构的推测冰的结构 密堆积的定义 密堆积 由无方向性的金属键 离子键和范德华力等结合的晶体中 原子 离子或分子等微观粒子总是趋向于相互配位数高 能充分利用空间的堆积密度最大的那些结构 密堆积方式因充分利用了空间 而使体系的势能尽可能降低 而结构稳定 常见的密堆积类型 常见密堆积型式 面心立方最密堆积 A1 六方最密堆积 A3 体心立方密堆积 A2 最密 非最密 晶体结构内容的相互关系 密堆积原理是一个把中学化学的晶体结构内容联系起来的一个桥梁性的理论体系 1 面心立方最密堆积 A1 和六方最密堆积 A3 面心立方最密堆积 A1 和六方最密堆积 A3 从上面的等径圆球密堆积图中可以看出 只有1种堆积形式 每个球和周围6个球相邻接 配位数位6 形成6个三角形空隙 每个空隙由3个球围成 由N个球堆积成的层中有2N个空隙 即球数 空隙数 1 2 两层球的堆积情况图 1 在第一层上堆积第二层时 要形成最密堆积 必须把球放在第二层的空隙上 这样 仅有半数的三角形空隙放进了球 而另一半空隙上方是第二层的空隙 2 第一层上放了球的一半三角形空隙 被4个球包围 形成四面体空隙 另一半其上方是第二层球的空隙 被6个球包围 形成八面体空隙 两层堆积情况分析 三层球堆积情况分析 第二层堆积时形成了两种空隙 四面体空隙和八面体空隙 那么 在堆积第三层时就会产生两种方式 1 第三层等径圆球的突出部分落在正四面体空隙上 其排列方式与第一层相同 但与第二层错开 形成ABAB 堆积 这种堆积方式可以从中划出一个六方单位来 所以称为六方最密堆积 A3 2 另一种堆积方式是第三层球的突出部分落在第二层的八面体空隙上 这样 第三层与第一 第二层都不同而形成ABCABC 的结构 这种堆积方式可以从中划出一个立方面心单位来 所以称为面心立方最密堆积 A1 六方最密堆积 A3 图 六方最密堆积 A3 分解图 面心立方最密堆积 A一 图 面心立方最密堆积 A1 分解图 A1型最密堆积图片 将密堆积层的相对位置按照ABCABC 方式作最密堆积 重复的周期为3层 这种堆积可划出面心立方晶胞 A3型最密堆积图片 将密堆积层的相对位置按照ABABAB 方式作最密堆积 这时重复的周期为两层 A1 A3型堆积小结 同一层中球间有三角形空隙 平均每个球摊列2个空隙 第二层一个密堆积层中的突出部分正好处于第一层的空隙即凹陷处 第二层的密堆积方式也只有一种 但这两层形成的空隙分成两种 正四面体空隙 被四个球包围 正八面体空隙 被六个球包围 突出部分落在正四面体空隙AB堆积A3 六方 突出部分落在正八面体空隙ABC堆积A1 面心立方 第三层堆积方式有两种 A1 A3型堆积的比较 以上两种最密堆积方式 每个球的配位数为12 有相同的堆积密度和空间利用率 或堆积系数 即球体积与整个堆积体积之比 均为74 05 空隙数目和大小也相同 N个球 半径R 2N个四面体空隙 可容纳半径为0 225R的小球 N个八面体空隙 可容纳半径为0 414R的小球 A1 A3的密堆积方向不同 A1 立方体的体对角线方向 共4条 故有4个密堆积方向 111 11 11 11 易向不同方向滑动 而具有良好的延展性 如Cu A3 只有一个方向 即六方晶胞的C轴方向 延展性差 较脆 如Mg 空间利用率的计算 空间利用率 指构成晶体的原子 离子或分子在整个晶体空间中所占有的体积百分比 球体积空间利用率 100 晶胞体积 A3型最密堆积的空间利用率计算 解 在A3型堆积中取出六方晶胞 平行六面体的底是平行四边形 各边长a 2r 则平行四边形的面积 平行六面体的高 A1型堆积方式的空间利用率计算 2 体心立方密堆积 A2 A2不是最密堆积 每个球有八个最近的配体 处于边长为a的立方体的8个顶点 和6个稍远的配体 分别处于和这个立方体晶胞相邻的六个立方体中心 故其配体数可看成是14 空间利用率为68 02 每个球与其8个相近的配体距离与6个稍远的配体距离 A2型密堆积图片 3 金刚石型堆积 A4 配位数为4 空间利用率为34 01 不是密堆积 这种堆积方式的存在因为原子间存在着有方向性的共价键力 如Si Ge Sn等 边长为a的单位晶胞含半径的球8个 4 堆积方式及性质小结 堆积方式点阵形式空间利用率配位数Z球半径面心立方最密堆积 A1 面心立方74 05 124六方最密堆积 A3 六方74 05 122体心立方密堆积 A2 体心立方68 02 8 或14 2金刚石型堆积 A4 面心立方34 01 48 5 堆积方式与晶胞关系 A1 面心立方晶胞A2 体心立方晶胞A4 面心立方晶胞A3 六方晶胞六方晶胞中a b c 90 120 晶体类型 根据形成晶体的化合物的种类不同可以将晶体分为 离子晶体 分子晶体 原子晶体和金属晶体 1 离子晶体 离子键无方向性和饱和性 在离子晶体中正 负离子尽可能地与异号离子接触 采用最密堆积 离子晶体可以看作大离子进行等径球密堆积 小离子填充在相应空隙中形成的 离子晶体多种多样 但主要可归结为6种基本结构型式 配位多面体的极限半径比 配位多面体配位数半径比 r r min平面三角形30 155四面体40 225八面体60 414立方体80 732立方八面体121 000 构性判断 半径比 r r 推测构型0 225 0 414四面体配位0 414 0 732八面体配位 0 732立方体配位 影响晶体结构的其它因素 M X间的共价键 方向性 有的过渡金属形成M M键 使配位多面体变形 M周围的配体X的配位场效应使离子配位多面体变形 实验测定是最终标准 1 NaCl 1 立方晶系 面心立方晶胞 2 Na 和Cl 配位数都是6 3 Z 4 4 Na C1 离子键 5 Cl 离子和Na 离子沿 111 周期为 AcBaCb 地堆积 ABC表示Cl 离子 abc表示Na 离子 Na 填充在Cl 的正八面体空隙中 NaCl的晶胞结构和密堆积层排列 NaCl KBr RbI MgO CaO AgCl ZnS ZnS是S2 最密堆积 Zn2 填充在一半四面体空隙中 分立方ZnS和六方ZnS 立方ZnS 1 立方晶系 面心立方晶胞 Z 4 2 S2 立方最密堆积 AaBbCc 3 配位数4 4 4 Zn原子位于面心点阵的阵点位置上 S原子也位于另一个这样的点阵的阵点位置上 后一个点阵对于前一个点阵的位移是体对角线底1 4 原子的坐标是 4S 000 1 21 20 1 201 2 01 21 2 4Zn 1 41 41 4 3 43 41 4 3 41 43 4 1 43 43 4 六方ZnS 1 六方晶系 简单六方晶胞 2 Z 2 3 S2 六方最密堆积 AaBb 4 配位数4 4 6 2s 000 2 31 31 2 2Zn 005 8 2 31 31 8 CaF2型 萤石 1 立方晶系 面心立方晶胞 2 Z 4 3 配位数8 4 4 Ca2 F 离子键 5 Ca2 立方最密堆积 F 填充在全部四面体空隙中 6 Ca2 离子配列在面心立方点阵的阵点位置上 F 离子配列在对Ca2 点阵的位移各为对角线的1 4与3 4的两个面心立方点阵的阵点上 原子坐标是 4Ca2 000 1 21 20 1 201 2 01 21 2 8F 1 41 41 4 3 43 41 4 3 41 43 4 1 43 43 4 3 43 43 4 1 41 43 4 1 43 41 4 3 41 41 4 CaF2结构图片 CaF2的结构图 CsCl型 1 立方晶系 简单立方晶胞 2 Z 1 3 Cs Cl 离子键 4 配位数8 8 5 Cs 离子位于简单立方点阵的阵点上位置上 Cl 离子也位于另一个这样的点阵的阵点位置上 它对于前者的位移为体对角线的1 2 原子的坐标是 Cl 000 Cs 1 21 21 2 CsCl CsBr CsI NH4Cl TiO2型 1 四方晶系 体心四方晶胞 2 Z 2 3 O2 近似堆积成六方密堆积结构 Ti4 填入一半的八面体空隙 每个O2 附近有3个近似于正三角形的Ti4 配位 4 配位数6 3 TiO2结构图片 2 分子晶体 定义 单原子分子或以共价键结合的有限分子 由范德华力凝聚而成的晶体 范围 全部稀有气体单质 许多非金属单质 一些非金属氧化物和绝大多数有机化合物都属于分子晶体 特点 以分子间作用力结合 相对较弱 除范德华力外 氢键是有些分子晶体中重要的作用力 氢键 定义 是极性很大的共价键 是电负性很强的原子 氢键的强弱介于共价键和范德华力之间 氢键由方向性和饱和性 间距为氢键键长 夹角为氢键键角 通常100 180 一般来说 键长越短 键角越大 氢键越强 氢键对晶体结构有着重大影响 3 原子晶体 定义 以共价键形成的晶体 共价键由方向性和饱和性 因此 原子晶体一般硬度大 熔点高 不具延展性 代表 金刚石 Si Ge Sn等的单质 C3N4 SiC SiO2等 4 金属晶体 金属键是一种很强的化学键 其本质是金属中自由电子在整个金属晶体中自由运动 从而形成了一种强烈的吸引作用 绝大多数金属单质都采用A1 A2和A3型堆积方式 而极少数如 Sn Ge Mn等采用A4型或其它特殊结构型式 金属晶体 ABABAB 配位数 12 例 MgandZn ABCABC 配为数 12 例 Al Cu Ag Au 立方密堆积 面心 金 gold Au 体心立方e g Fe Na K U 简单立方 钋 Po 简单立方堆积 a 简单立方 d m a3 M NA 2r 3 M 8NAr3 b 体心立方 d m a3 2M NA 4r 31 2 3 33 2M 32NAr3 c 面心立方 d m a3 4M NA 81 2r 3 4M 83 2NAr3 a b c 1 1 299 1 414面心结构密度最大 最稳定 立方密堆积 密度与金属固体的结构 专题一 空隙 构成晶体的基本粒子之间会形成空隙 因而空隙是晶体结构必不可少的组成部分 掌握晶体结构中空隙的构成和特点 对深刻理解晶体的基本结构规律 分析和解决晶体结构问题有着重要的现实意义 堆积球数 四面体空隙数 八面体空隙数 1 2 1 四面体和八面体空隙分别可容纳半径为0 225R和0 414R的内切球 R为堆积球半径 图2 例题1 C60的发现开创了国际科学界的一个新领域 除C60分子本身具有诱人的性质外 人们发现它的金属掺杂体系也往往呈现出多种优良性质 所以掺杂C60成为当今的研究热门领域之一 经测定C60晶体为面心立方结构 晶胞参数a 1420pm 在C60中掺杂碱金属钾能生成盐 假设掺杂后的K 填充C60分子堆积形成的全部八面体空隙 在晶体中以K 和C60 存在 且C60 可近似看作与C60半径相同的球体 已知C的范德华半径为170pm K 的离子半径133pm 1 掺杂后晶体的化学式为 晶胞类型为 如果C60 为顶点 那么K 所处的位置是 处于八面体空隙中心的K 到最邻近的C60 中心距离是pm 2 实验表明C60掺杂K 后的晶胞参数几乎没有发生变化 试给出理由 3 计算预测C60球内可容纳半径多大的掺杂原子 解答 这个题目的关键是掺杂C60晶胞的构建 C60形成如下图所示的面心立方晶胞 K 填充全部八面体空隙 根据本文前面的分析 这就意味着K 处在C60晶胞的体心和棱心 形成类似NaCl的晶胞结构 这样 掺杂C60的晶胞确定后 下面的问题也就迎
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开封十四中校本活动方案
- 开展短视频宣传活动方案
- 张掖团建活动方案
- 开学美发活动方案
- 志愿者文明礼让活动方案
- 快乐春节活动方案
- 彩色羽毛活动方案
- 快写比赛活动方案
- 开业酒店盛宴活动方案
- 校园学生社团建设与维护协议
- 拳击入门-北京理工大学中国大学mooc课后章节答案期末考试题库2023年
- 中石油职称英语通用教材
- ICD-10疾病编码完整版
- 智能客房控制器设计
- 滁州瑞芬生物科技有限公司年产1.5万吨赤藓糖醇项目环境影响报告书
- THMDSXH 003-2023 电商产业园区数字化建设与管理指南
- 新建ICU镇痛、镇静药物应用幻灯片
- 橡胶和基材的粘接
- GB/T 10610-2009产品几何技术规范(GPS)表面结构轮廓法评定表面结构的规则和方法
- GA/T 935-2011法庭科学枪弹痕迹检验鉴定文书编写规范
- 湖北省黄石市基层诊所医疗机构卫生院社区卫生服务中心村卫生室信息
评论
0/150
提交评论