




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档 1欢迎下载 九年级数学九年级数学 补课教案补课教案 3 月 21 日 课题初中函数专题复习两课时 一 教学目标 1 知识技能 学生构建知识体系 通过解决典型的题目 抓住本章要点 解决易出 错的题目 找出错陷阱和错因 联系一次函数 反比例函数 二次函数及一元一 次方程 分式方程 一元二次方程等相关知识进行综合运用 2 过程与方法 从知识生成的本质和思想方法的本质养成学习数学的能力 经历观 察 思考 交流 熟练 灵活解题 3 情感 态度 价值观 培养学生数形结合的数学思想 提高学生的数学应用意识 二 教学重难点 1 教学重点 深化理解函数与方程的概念和性质 熟练进行函数的综合应用 2 教学难点 进一步理解函数与方程的性质和关系 并能熟练进行函数的综合应用 三 课型课时 复习课 2 课时 四 教学工具 多媒体课件 导学案 五 教学方法 六 教学过程设计 函数知识点总结函数知识点总结 掌握函数的定义 性质和图像掌握函数的定义 性质和图像 一 平面直角坐标系 一 平面直角坐标系 1 定义 平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系 简称为直角坐标 系 2 各个象限内点的特征 第一象限 点 P x y 则 x 0 y 0 第二象限 点 P x y 则 x 0 y 0 第三象限 点 P x y 则 x 0 y 0 第四象限 点 P x y 则 x 0 y 0 3 坐标轴上点的坐标特征 x 轴上的点 纵坐标为零 y 轴上的点 横坐标为零 原点的坐标为 0 0 两坐标 轴的点不属于任何象限 4 点的对称特征 已知点 P m n 关于 x 轴的对称点坐标是 m n 横坐标相同 纵坐标反号 关于 y 轴的对称点坐标是 m n 纵坐标相同 横坐标反号 关于原点的对称点坐标是 m n 横 纵坐标都反号 5 平行于坐标轴的直线上的点的坐标特征 平行于 x 轴的直线上的任意两点 纵坐标相等 精品文档 2欢迎下载 平行于 y 轴的直线上的任意两点 横坐标相等 6 各象限角平分线上的点的坐标特征 第一 三象限角平分线上的点横 纵坐标相等 第二 四象限角平分线上的点横 纵坐标互为相反数 7 点 P x y 的几何意义 点 P x y 到 x 轴的距离为 y 点 P x y 到 y 轴的距离为 x 点 P x y 到坐标原点的距离为 22 yx 8 两点之间的距离 X 轴上两点为 A A B B AB AB 0 1 x 0 2 x 12 xx Y 轴上两点为 C C D D CD CD 0 1 y 0 2 y 12 yy 已知 A B AB AB 11 yx 22 yx 2 12 2 12 yyxx 9 中点坐标公式 已知 A B M 为 AB 的中点 11 yx 22 yx 则 M 2 12 xx 2 12 yy 10 点的平移特征 在平面直角坐标系中 将点 x y 向右平移 a 个单位长度 可以得到对应点 x a y 将点 x y 向左平移 a 个单位长度 可以得到对应点 x a y 将点 x y 向上平移 b 个单位长度 可以得到对应点 x y b 将点 x y 向下平移 b 个单位长度 可以得到对应点 x y b 注意 对一个图形进行平移 这个图形上所有点的坐标都要发生相应的变化 反过来 从图形上点的坐标的加减变化 我们也可以看出对这个图形进行了怎样的平移 二 函数的基本知识 二 函数的基本知识 基本概念基本概念 1 1 变量 变量 在一个变化过程中可以取不同数值的量 常量 常量 在一个变化过程中只能取同一数值的量 精品文档 3欢迎下载 2 2 函数 函数 一般的 在一个变化过程中 如果有两个变量 x 和 y 并且对于 x 的每一个确定 的值 y 都有唯一确定的值与其对应 那么我们就把 x 称为自变量 把 y 称为因变量 y 是 x 的函数 判断 A 是否为 B 的函数 只要看 B 取值确定的时候 A 是否有唯一确定的值与之对应 3 3 定义域 定义域 一般的 一个函数的自变量允许取值的范围 叫做这个函数的定义域 4 4 确定函数定义域的方法 确定函数定义域的方法 1 关系式为整式时 函数定义域为全体实数 2 关系式含有分式时 分式的分母不等于零 3 关系式含有二次根式时 被开放方数大于等于零 4 关系式中含有指数为零的式子时 底数不等于零 5 实际问题中 函数定义域还要和实际情况相符合 使之有意义 5 5 函数的图像 函数的图像 一般来说 对于一个函数 如果把自变量与函数的每对对应值分别作为点的横 纵坐 标 那么坐标平面内由这些点组成的图形 就是这个函数的图象 6 6 函数解析式 函数解析式 用含有表示自变量的字母的代数式表示因变量的式子叫做解析式 7 7 描点法画函数图形的一般步骤 描点法画函数图形的一般步骤 第一步 列表 表中给出一些自变量的值及其对应的函数值 第二步 描点 在直角坐标系中 以自变量的值为横坐标 相应的函数值为纵坐标 描出表格中数值对应的各点 第三步 连线 按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来 8 8 函数的表示方法 函数的表示方法 列表法 一目了然 使用起来方便 但列出的对应值是有限的 不易看出自变量与函 数之间的对应规律 解析式法 简单明了 能够准确地反映整个变化过程中自变量与函数之间的相依关系 但有些实际问题中的函数关系 不能用解析式表示 图象法 形象直观 但只能近似地表达两个变量之间的函数关系 三 正比例函数和一次函数 三 正比例函数和一次函数 1 1 正比例函数及性质 正比例函数及性质 一般地 形如 y kx k 是常数 k 0 的函数叫做正比例函数 其中 k 叫做比例系数 注 正比例函数一般形式 y kx k 不为零 k 不为零 x 指数为 1 b 取零 当 k 0 时 直线 y kx 经过三 一象限 从左向右上升 即随 x 的增大 y 也增大 当 k0 时 图像经过一 三象限 k0 y 随 x 的增大而增大 k0 时 向上平移 当 b0 图象经过第一 三象限 k0 图象经过第一 二象限 b0 直线从左向右是向上的 k0 直线与 y 轴的正半轴相交 b0 y 随 x 的增大而增大 k0 时 将直线 y kx 的图象向上平移 b 个单位 精品文档 5欢迎下载 当 b0 b 0 2 k 0 b 0 3 k 0 b 0 4 k0 4 4 直线 直线 y kxy kx b k 0 b k 0 与坐标轴的交点 与坐标轴的交点 1 1 直线直线 y kxy kx 与与 x x 轴 轴 y y 轴的交点都是轴的交点都是 0 0 0 0 2 2 直线直线 y kxy kx b b 与与 x x 轴交点坐标为轴交点坐标为与与 y y 轴交点坐标为轴交点坐标为 0 0 b b 5 5 用待定系数法确定函数解析式的一般步骤 用待定系数法确定函数解析式的一般步骤 1 根据已知条件写出含有待定系数的函数关系式 2 将 x y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系 数为未知数的方程 3 解方程得出未知系数的值 4 将求出的待定系数代回所求的函数关系式中得出所求函数的解析式 6 6 两条直线交点坐标的求法 两条直线交点坐标的求法 方法 联立方程组求 x y 例题 已知两直线 y x 6 与 y 2x 4 交于点 P 求 P 点的坐标 7 7 直线 直线 y k1x b1y k1x b1 与与 y k2x b2y k2x b2 的位置关系的位置关系 1 两条直线平行 k1 k2 且 b1b2 2 两直线相交 k1k2 3 两直线重合 k1 k2且 b1 b2 平行于轴 或重合 的直线记作 特别地 轴记作直线 精品文档 6欢迎下载 8 8 正比例函数与一次函数图象之间的关系 正比例函数与一次函数图象之间的关系 一次函数 y kx b 的图象是一条直线 它可以看作是由直线 y kx 平移 b 个单位长度 而得到 当 b 0 时 向上平移 当 b0 或 ax b0 时 图象分别位于第一 三象限 同一个象限内 y 随 x 的增大而减 小 当 k0 时 函数在 x0 上同为减函数 k 0 时 函数在 x0 上同 为增函数 定义域为 x 0 值域为 y 0 3 因为在 y k x k 0 中 x 不能为 0 y 也不能为 0 所以反比例函数的图象 不可能与 x 轴相交 也不可能与 y 轴相交 4 在一个反比例函数图象上任取两点P Q 过点 P Q 分别作 x 轴 y 轴的平 行线 与坐标轴围成的矩形面积为S1 S2 则 S1 S2 K 5 反比例函数的图象既是轴对称图形 又是中心对称图形 它有两条对称轴 y x y x 即第一三 二四象限角平分线 对称中心是坐标原点 6 若设正比例函数 y mx 与反比例函数 y n x 交于 A B 两点 m n 同号 那 么 A B 两点关于原点对称 7 设在平面内有反比例函数 y k x 和一次函数 y mx n 要使它们有公共交点 则 n2 4k m 不小于 0 k x mx n 即 mx 2 nx k 0 8 反比例函数 y k x 的渐近线 x 轴与 y 轴 9 反比例函数关于正比例函数 y x y x 轴对称 并且关于原点中心对称 第 5 点的同义不同表述 10 反比例上一点 m 向 x y 轴分别做垂线 交于 q w 则矩形 mwqo o 为原点 的面积为 k 11 k 值相等的反比例函数重合 k 值不相等的反比例函数永不相交 12 k 越大 反比例函数的图象离坐标轴的距离越远 五 二次函数 五 二次函数 二次函数是指未知数的最高次数为二次的多项式函数 二次函数可以表示为 f x ax 2 bx c a 不为 0 其图像是一条主轴平行于 y 轴的抛物线 一一般般式式 已知图像上三点或三对 的值 通常选择一般式 y ax 2 bx c a 0 a b c 为常数 顶点坐标为 b 2a 4ac b 2 4a 顶顶点点式式 已知图像的顶点或对称轴 通常选择顶点式 y a x m 2 k a 0 a m k 为常数 或 y a x h 2 k a 0 a h k 为常数 顶点坐标为 m k 或 h k 对称轴为 x m 或 x h 有时题目会指出让你用配方 法把一般式化成顶点式 精品文档 8欢迎下载 交交点点式式 已知图像与轴的交点坐标 通常选用交点式 y a x x1 x x2 仅限于与 x 轴有交点 A x1 0 和 B x2 0 的抛物线 抛物线的三要素 开口方向 对称轴 顶点抛物线的三要素 开口方向 对称轴 顶点 顶顶点点 抛物线有一个顶点 P 坐标为 P b 2a 4ac b 2 4a 当 b 2a 0 时 P 在 y 轴上 当 b 2 4ac 0 时 P 在 x 轴上 开开口口 二次项系数 a 决定抛物线的开口方向和大小 当 a a 0 0 时 抛物线 向向上上开口 当 a a 0 0 时 抛物线 向向下下开口 a 越越大大 则抛物线的开口 越越小小 决决定定对对称称轴轴位位置置的的因因素素 一次项系数 b 和二次项系数 a 共同决定对称轴的位置 当 a 与 b 同同号时 即 ab 0 对称轴在 y y 轴轴左左 当 a 与 b 异异号时 即 ab 0 对 称轴在 y y 轴轴右右 左左同同右右异异 c 的大小决定抛物线与轴交点的位置 当时 抛物线与轴有且只有一个交点 0 抛物线经过原点 与轴交于正半轴 与轴交于负半轴 直线与抛物线的交点直线与抛物线的交点 1 轴与抛物线得交点为 0 2 与轴平行的直线与抛物线有且只有一个交点 3 抛物线与轴的交点 二次函数的图像与轴的两个交点的横坐标 是对应一元二次方 程的两个实数根 抛物线与轴的交点情况可以由对应的一元二次方程的 根的判别式判定 有两个交点抛物线与轴相交 精品文档 9欢迎下载 有一个交点 顶点在轴上 抛物线与轴相切 没有交点抛物线与轴相离 4 平行于轴的直线与抛物线的交点同 3 一样可能有 0 个交点 1 个交点 2 个交点 当 有 2 个交点时 两交点的纵坐标相等 设纵坐标为 则横坐标是的两 个实数根 5 一次函数的图像 与二次函数的图像的 交点 由方程组 的解的数目来确定 方程组有两组不同的解时与有两个交点 方程组只有一组解时与只有 一个交点 方程组无解时与没有交点 6 抛物线与轴两交点之间的距离 若抛物线与轴两交点为 由于 是方程的两个根 故 7 小结归纳 1 构建知识体系 纳入知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非木竹材压片工艺考核试卷及答案
- 电机转子动平衡工艺考核试卷及答案
- 重碱煅烧工抗压考核试卷及答案
- 电子电气产品环境试验检验员工艺考核试卷及答案
- 企业物资采购流程及合同管理测试卷附答案
- 2025-2026学年赣美版(2024)小学美术三年级上册(全册)教学设计(附目录P129)
- 专家合作协议
- 英国秋招面试题库及答案
- 银行助贷面试题及答案
- 银行招聘 试题及答案
- 2024年道路交通(驾驶员交通法规及安全)知识考试题库与答案
- 2024年全国职业院校技能大赛中职(数字产品检测与维护赛项)考试题库(含答案)
- 【乡村旅游探究的文献综述4200字】
- 专利联合申请及利益分配协议(2024版)
- 新改版苏教版六年级上册科学全册知识点复习资料
- 2025年上半年教师资格考试高中历史学科知识与教学能力试卷与参考答案
- 城市供热管网抢修与维护工程技术规程
- CJ/T 113-2015 燃气取暖器 标准
- DB2104∕T 0011-2022 地理标志产品 清原龙胆
- 《电动汽车双向无线电能传输系统技术规范》
- 医院护理培训课件:《安全注射》
评论
0/150
提交评论