




免费预览已结束,剩余22页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级 上 第四章图形的相似九年级 上 第四章图形的相似 1 形状相同的图形叫相似图形 在相似多边形中 最简单的是相似三角形 2 相似多边形相似多边形 如果两个边数相同的多边形的对应角相等对应角相等 对应边成比例对应边成比例 这两个多边形叫做相似多 边形 相似多边形对应边长度的比叫做相似比 一 成比例线段一 成比例线段 1 1 线段的比 线段的比 如果选用同一单位量得两条线段的长度分别为 那么就说这两条线段的比是 或写ba nm n m b a 成 注 在求线段比时 线段单位要统一 nmba 2 2 成比例线段 成比例线段 在四条线段中 如果的比等于的比 那么这四条线段叫做成比例线段比例线段 dcba ba和dc和dcba 简称比例线段 注 比例线段是有顺序的 如果说 成比例 那么应得比例式为 adcb b a d c a d 叫比例外项 b c 叫比例内项 如果 b c 即 ac abcd bd 在比例式 中 那么 b 叫做 a d 的比例中项比例中项 此时有 abbd 2 bad 判断给定的四条线段是否成比例的方法 第一排 现将四条线段的长度统一单位 再按大小顺序排 列好 第二算 分别算出前两条线的长度之比与后两条线段的长度之比 第三判 若两个比相等 则这四 条线段是成比例线段 否则不是 3 3 比例的性质 注意性质立的条件 分母不能为 比例的性质 注意性质立的条件 分母不能为0 0 基本性质 a b c d 则有 ad bc 两外项之积等于两内向之积 2 a bb cba c 注 由一个比例式比例式只可化成一个等积式个等积式 而一个等积式共可化成八个比例式 如 除bcad 了可化为 还可化为 dcba dbca badc cadb cdab bdac abcd acbd 2 更比性质 交换比例的内项或外项 ab cd acdc bdba db ca 交换内项 交换外项 同时交换内外项 3 合 分比性质 acabcd bdbd 4 等比性质 如果 那么 0 nfdb n m f e d c b a b a nfdb meca 注 此性质的证明运用了 设法 即引入新的参数 k 这样可以减少未知数的个数 这种方法是有关比例k 计算变形中一种常用方法 应用等比性质时 要考虑到分母是否为零 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数 再利用等比性质也成立 如 其中 b a fdb eca f e d c b a f e d c b a 32 32 3 3 2 2 032 fdb 4 4 比例题常用的方法有 比例题常用的方法有 比例合分比法 比例等比法 设参法 连等设 k 法 消元法 二 平行线分线段成比例二 平行线分线段成比例 1 1 平行线分线段成比例定理 平行线分线段成比例定理 三条平行线截两条直线 所截得的对应线段成比例 已知 AD BE CF 可得等 ABDEABDEBCEFBCEFABBC BCEFACDFABDEACDFDEEF 或或或或 注意 是所截的线段成比例 而跟平行线无关 所以比例线段中不可能 有 AD BE CF 的比例关系 2 2 黄金分割 黄金分割 把线段分成两条线段 且使是的比例中项 即AB BCACBCAC ACBCAB和 叫做把线段黄金分割 点叫做线段的黄金分割点 其中 2 ACAB BC ABCAB 0 618 即 简记为 ABAC 2 15 AB 51 2 ACBC ABAC 51 2 长短 全长 注 黄金三角形 顶角是 360的等腰三角形 黄金矩形 宽与长的比等于黄金数的矩形 三 相似三角形的概念三 相似三角形的概念 相似三角形概念 相似三角形概念 对应角相等 对应边成比例的三角形 叫做相似三角形 相似用符号 表示 读作 相 似于 相似三角形对应边的比叫做相似比 相似三角形对应角相等 对应边成比例 注意 注意 对应性 即两个三角形相似时 一定要把表示对应顶点的字母按相同的顺序写 这样写比较容易找到 相似三角形的对应角和对应边 两个三角形形状一样 但大小不一定一样 全等三角形是相似比为 1 的相似三角形 二者的区别在于全等要求对应边相等 而相似要求对应边成 比例 三角形中平行线分线段成比例定理三角形中平行线分线段成比例定理 平行于三角形一边的直线截其它两边 或两边的延长线 所得的对应线段成比 例 由 DE BC 可得 AC AE AB AD EA EC AD BD EC AE DB AD 或或 注 重要结论 平行于三角形的一边 并且和其它两边相交的直线 所截的三角形的三边与原三角形三边对应成比 例 易错点 错 对 DB AD BC DE AB AD BC DE 四 三角形相似的判定方法四 三角形相似的判定方法 F E D C B A E A B C D 1 定义法 三个对应角相等 三条对应边成比例的两个三角形相似 2 平行法 平行于三角形一边的直线和其它两边 或两边的延长线 相交 所构成的三角 形与原三角形相似 一一 相似三角形的判断定理 相似三角形的判断定理 判定定理 1 如果一个三角形的两个角与另一个三角形的两个角对应相等两个角与另一个三角形的两个角对应相等 那么这两 个三角形相似 简述为 两角对应相等 两三角形相似 判定定理 2 如果一个三角形的两条边与另一个三角形的两条边对应成比例两条边与另一个三角形的两条边对应成比例 并且夹并且夹 角相等角相等 那么这两个三角形相似 简述为 两边对应成比例且夹角相等 两三角形相似 有些像 SAS 判定定理 3 如果一个三角形的三条边与另一个三角形的三条边对应成比例如果一个三角形的三条边与另一个三角形的三条边对应成比例 那么这 两个三角形相似 简述为 三边对应成比例 两三角形相似 二 判定直角三角形相似的方法 二 判定直角三角形相似的方法 1 以上各种判定均适用 2 2 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例 那么如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例 那么 这两个直角三角形相似 这两个直角三角形相似 3 直角三角形被斜边上的高分成的两个直角三角形与原三角形相似 一共产生三对相似三角形三对相似三角形 三三 射射影影定定理理 在直角三角形 中 斜边上的高是两直角边在斜边上射影的 比例中项 每一条直角边 是这条直角边在斜边上的射影和斜边的比例中项 如图 Rt ABC 中 BAC 90 AD 是斜边 BC 上的高 则 AD2 BD DC AB2 BD BC AC2 CD BC 五 相似三角形常见的图形五 相似三角形常见的图形 1 1 下面我们来看一看相似三角形的几种基本图形 下面我们来看一看相似三角形的几种基本图形 D BC A 如图 称为 平行线型 的相似三角形 有 A 型 与 X 型 图 即平行于三角形一边的直线和其它两边 或两边延长线 相交 所构成的三角形与原三角形相似 2 如图 其中 1 2 则 ADE ABC 称为 斜交型 的相似三角形 有 反 A 共角型 反 A 共角共边型 蝶型 3 如图 称为 垂直型 有 双垂直共角型 双垂直共角共边型 也称 射影定理型 三垂直型 4 如图 1 2 B D 则 ADE ABC 称为 旋转型 的相似三角形 2 2 几种基本图形的具体应用 几种基本图形的具体应用 1 若 DE BC A 型和 X 型 则 ADE ABC 2 射影定理 若 CD 为 Rt ABC 斜边上的高 双直角图形 则 Rt ABC Rt ACD Rt CBD 且 AC2 AD AB CD2 AD BD BC2 BD AB E A D CB E A D C B AD C B 3 3 全等与相似的比较 全等与相似的比较 三角形全等三角形相似 两角夹一边对应相等 ASA 两角一对边对应相等 AAS 两边及夹角对应相等 SAS 三边对应相等 SSS 直角三角形中一直角边与斜边对应相等 HL 相似判定的预备定理 两角对应相等 两边对应成比例 且夹角相等 三边对应成比例 直角三角形中斜边与一直角边对应成比例 E E 1 2 4 2 E C A B D E A B C D E AD C B 1 E A B C D 3 D B C A E 2 C D E A B 4 4 相似三角形的性质相似三角形的性质 1 相似三角形对应角相等 对应边成比例 2 相似三角形对应高的比对应高的比 对应中线的比对应中线的比和对应角平分线的比对应角平分线的比都等于相似比等于相似比 3 相似三角形周长的比等于相似比 4 相似三角形面积的比面积的比等于相似比的平方相似比的平方 5 5 相似多边形的性质相似多边形的性质 相似多边形的相似必须同时满足两个条件 相似多边形的相似必须同时满足两个条件 对应边成比例 对应边成比例 对应角相等 两个同时成立才可以说明多边对应角相等 两个同时成立才可以说明多边 形相似 缺一不可 如两个矩形不一定相似 缺少形相似 缺一不可 如两个矩形不一定相似 缺少 1 相似多边形周长比 对应对角线的比都等于相似比 2 相似多边形中对应三角形相似 相似比等于相似多边形的相似比 3 相似多边形面积比等于相似比的平方 注意 相似多边形问题往往要转化成相似三角形问题去解决 因此 熟练掌握相似三角形知识是基础和关 键 六 相似三角形中有关证六 相似三角形中有关证 解 题规律与辅助线作法 解 题规律与辅助线作法 1 1 证明题常用方法归纳 证明题常用方法归纳 1 总体思路 等积式 变 比例式 比例的对应边 找 相似多边形的对应边 当有多条边相等的时 候要会转移边 2 找相似 通过 横找 竖看 寻找三角形 即横向看或纵向寻找的时候一共各有三个不 同的字母 并且这几个字母不在同一条直线上 能够组成三角形 并且有可能是相似的 则可证明这两个三角形相似 然后由相似三角形对应边成比例即可证的所需的结论 常用方法 一对平行线之间有多少个交点 就会产生多少对相似三角形常用方法 一对平行线之间有多少个交点 就会产生多少对相似三角形 3 找中间比 若没有三角形 即横向看或纵向寻找的时候一共有四个字母或者三个字母 但这 几个字母在同一条直线上 则需要进行 转移 或 替换 常用的 替换 方法有这样 的三种 等线段代换 等比代换 等积代换 即 找相似找不到 找中间比 方法 将等式左右两边的比表示出来 为中间比 n m n m d c n m b a nn n m d c n m b a n m n m nnmm n m d c n m b a 或 4 添加辅助线 若上述方法还不能奏效的话 可以考虑添加辅助线 通常是添加平行线 构成 比例 以上步骤可以不断的重复使用 直到被证结论证出为止 注 添加辅助平行线是获得成比例线段和相似三角形的重要途径 平面直角坐标系中通常是作垂线 即得平行线 构造相似三角形或比例线段 5 比例问题 常用处理方法是将 一份 看着 k 对于等比问题 常用处理办法是设 公比 为 k 6 对于复杂的几何图形 通常采用将部分需要的图形 或基本图形 分离 出来的办法处理 2 2 相似图形的证明题型相似图形的证明题型 题型一 相似之中间项转化题型一 相似之中间项转化 解题思路 一条平行线至少能产生一组比例式 利用比例式等量代换解题思路 一条平行线至少能产生一组比例式 利用比例式等量代换 题型二 辅助线题型二 辅助线 X X 图图 题型三 面积相等题题型三 面积相等题 题型四 周长相等题题型四 周长相等题 题型五 相似旋转题型五 相似旋转 题型六 非相似三角形的面积比题型六 非相似三角形的面积比 题型七 相似外角推论题型七 相似外角推论 题型八 函数题题型八 函数题 七 位似图形七 位似图形 1 如果两个图形不仅是相似图形 而且每组对应顶点的连线都交于一点每组对应顶点的连线都交于一点 那么这样的两个图形叫做位似图形 2 2 这个点叫做位似中心 这时的相似比又称为位似比这个点叫做位似中心 这时的相似比又称为位似比 1 位似图形是相似图形的特例 位似图形不仅相似 而且对应顶点的连线相交于一点 2 位似图形一定是相似图形 但相似图形不一定是位似图形 3 位似图形的对应边互相平行或共线 4 4 位似多边形对应顶点到位似中心的距离之比等于位似比位似多边形对应顶点到位似中心的距离之比等于位似比 3 3 画位似图形的一般步骤 画位似图形的一般步骤 1 确定位似中心 位似中心可以是平面中任意一点 2 分别连接原图形中的关键点和位似中心 并延长 或截取 3 根据已知的位似比 确定所画位似图形中关键点的位置 4 顺次连结上述得到的关键点 即可得到一个放大或缩小的图形 注 位似中心可以是平面内任意一点 该点可在图形内 或在图形外 或在图形上 图形边上或顶点上 外位似 位似中心在连接两个对应点的线段之外 称为 外位似 即同向位似图形 内位似 位似中心在连接两个对应点的线段上 称为 内位似 即反向位似图形 5 在平面直角坐标系中 如果位似变换是以原点O为位似中心 相似比为k k 0 原图形上点的坐标为 x y 那么同向位似图形对应点的坐标为 kx ky 反向位似图形对应点的坐标为 kx ky 比例的性质比例的性质 比例线段比例线段 平行线分线段成比例平行线分线段成比例 相似图形相似图形 相似多边形的性质相似多边形的性质 相似三角形的判定相似三角形的判定 利用相似测高利用相似测高 相似三角形的性质相似三角形的性质 经典例题透析经典例题透析 类型一 相似三角形的概念类型一 相似三角形的概念 1 判断对错 1 两个直角三角形一定相似吗 为什么 2 两个等腰三角形一定相似吗 为什么 3 两个等腰直角三角形一定相似吗 为什么 4 两个等边三角形一定相似吗 为什么 5 两个全等三角形一定相似吗 为什么 思路点拨 思路点拨 要说明两个三角形相似 要同时满足对应角相等 对应边成比例 要说明不相似 则只要否定其 中的一个条件 解 解 1 不一定相似不一定相似 反例反例 直角三角形只确定一个直角 其他的两对角可能相等 也可能不相等 所以直角三角形不一定相似 2 不一定相似不一定相似 反例反例 等腰三角形中只有两边相等 而底边不固定 因此两个等腰三角形中有两边对应成比例 两底边的比不一定 等于对应腰的比 所以等腰三角形不一定相似 3 一定相似一定相似 在直角三角形 ABC 与直角三角形 A B C 中 设 AB a A B b 则 BC a B C b AC a A C b ABC A B C 4 一定相似一定相似 因为等边三角形各边都相等 各角都等于 60 度 所以两个等边三角形对应角相等 对应边成比例 因此两 个等边三角形一定相似 5 一定相似一定相似 全等三角形对应角相等 对应边相等 所以对应边比为 1 所以全等三角形一定相似 且相似比为 1 举一反三举一反三 变式 1 两个相似比为 1 的相似三角形全等吗 解析 解析 全等 因为这两个三角形相似 所以对应角相等 又相似比为 1 所以对应边相等 因此这两个三角形全等 总结升华 总结升华 由上可知 在特殊的三角形中 有的相似 有的不一定相似 1 两个直角三角形 两个等腰三角形不一定相似 2 两个等腰直角三角形 两个等边三角形一定相似 3 两个全等三角形一定相似 且相似比为 1 相似比为 1 的两个相似三角形全等 变式 2 下列能够相似的一组三角形为 A 所有的直角三角形 B 所有的等腰三角形 C 所有的等腰直角三角形 D 所有的一边和这边上的高相等的三角形 解析 解析 根据相似三角形的概念 判定三角形是否相似 一定要满足三个角对应相等 三条对应边的比相等 而 A 中只有一组直角相等 其他的角是否对应相等不可知 B 中什么条件都不满足 D 中只有一条对应边的比 相等 C 中所有三角形都是由 90 45 45 角组成的三角形 且对应边的比也相等 答案选 C 类型二 相似三角形的判定类型二 相似三角形的判定 2 如图所示 已知中 E 为 AB 延长线上的一点 AB 3BE DE 与 BC 相交于 F 请找出图中 各对相似三角形 并求出相应的相似比 思路点拨 思路点拨 由可知 AB CD AD BC 再根据平行线找相似三角形 解 解 四边形 ABCD 是平行四边形 AB CD AD BC BEF CDF BEF AED BEF CDF AED 当 BEF CDF 时 相似比 当 BEF AED 时 相似比 当 CDF AED 时 相似比 总结升华 总结升华 本题中 BEF CDF AED 都相似 共构成三对相似三角形 求相似比不仅要找准对应边 还需注意两个三角形的先后次序 若次序颠倒 则相似比成为原来的倒数 3 已知在 Rt ABC 中 C 90 AB 10 BC 6 在 Rt EDF 中 F 90 DF 3 EF 4 则 ABC 和 EDF 相似吗 为什么 思路点拨 思路点拨 已知 ABC 和 EDF 都是直角三角形 且已知两边长 所以可利用勾股定理分别求出第三边 AC 和 DE 再看三边是否对应成比例 解 解 在 Rt ABC 中 AB 10 BC 6 C 90 由勾股定理得 在 Rt DEF 中 DF 3 EF 4 F 90 由勾股定理 得 在 ABC 和 EDF 中 ABC EDF 三边对应成比例 两三角形相似 总结升华 总结升华 1 本题易错为只看 3 6 4 10 四条线段不成比例就判定两三角形不相似 利用三边判定两三角形相 似 应看三角形的三边是否对应成比例 而不是两边 2 本题也可以只求出 AC 的长 利用两组对应边的比相等 且夹角相等 判定两三角形相似 4 如图所示 点 D 在 ABC 的边 AB 上 满足怎样的条件时 ACD 与 ABC 相似 试分别加以列举 思路点拨 思路点拨 此题属于探索问题 由相似三角形的识别方法可知 ACD 与 ABC 已有公共角 A 要使此 两个三角形相似 可根据相似三角形的识别方法寻找一个条件即可 解 解 当满足以下三个条件之一时 ACD ABC 条件一 1 B 条件二 2 ACB 条件三 即 总结升华 总结升华 本题的探索钥匙是相似三角形的识别方法 在探索两个三角形相似时 用分析法 可先假设 ACD ABC 然后寻找两个三角形中边的关系或角的关系即可 本题易错为出现条件四 不符合条件 最小化 原则 因为条件三能使问题成立 所以出现条件四是错误的 举一反三举一反三 变式 1 已知 如图正方形 ABCD 中 P 是 BC 上的点 且 BP 3PC Q 是 CD 的中点 求证 ADQ QCP 思路点拨 思路点拨 因 ADQ 与 QCP 是直角三角形 虽有相等的直角 但不知 AQ 与 PQ 是否垂直 所以不能用两个 角对应相等判定 而四边形 ABCD 是正方形 Q 是 CD 中点 而 BP 3PC 所以可用对应边成比例夹角相等的 方法来判定 具体证明过程如下 证明证明 在正方形 ABCD 中 Q 是 CD 的中点 2 3 4 又 BC 2DQ 2 在 ADQ 和 QCP 中 C D 90 ADQ QCP 变式 2 如图 弦和弦相交于内一点 求证 思路点拨 思路点拨 题目中求证的是等积式 我们可以转化为比例式 从而找到应证哪 两个三角形相似 同时圆当中同弧或等弧所对的圆周角相等要会灵活应用 证明 证明 连接 在 变式 3 已知 如图 AD 是 ABC 的高 E F 分别是 AB AC 的中点 求证 DFE ABC 思路点拨 思路点拨 EF 为 ABC 的中位线 EF BC 又 DE 和 DF 都是直角三角形斜边 上的中线 DE AB DF AC 因此考虑用三边对应成比例的两个三角形相似 证明 证明 在 Rt ABD 中 DE 为斜边 AB 上的中线 DE AB 即 同理 EF 为 ABC 的中位线 EF BC 即 DFE ABC 总结升华 总结升华 本题证明方法较多 可先证 EDF EDA ADF EAD FAD BAC 再证夹这个角的 两边成比例 即 也可证明 FED EDB B 同理 EFD FDC C 都可以证出 DEF ABC 类型三 相似三角形的性质类型三 相似三角形的性质 5 ABC DEF 若 ABC 的边长分别为 5cm 6cm 7cm 而 4cm 是 DEF 中一边的长度 你能求出 DEF 的另外两边的长度吗 试说明理由 思路点拨 思路点拨 因没有说明长 4cm 的线段是 DEF 的最大边或最小边 因此需分三种情况进行讨论 解 解 设另两边长是 xcm ycm 且 x y 1 当 DEF 中长 4cm 线段与 ABC 中长 5cm 线段是对应边时 有 从而 x cm y cm 2 当 DEF 中长 4cm 线段与 ABC 中长 6cm 线段是对应边时 有 从而 x cm y cm 3 当 DEF 中长 4cm 线段与 ABC 中长 7cm 线段是对应边时 有 从而 x cm y cm 综上所述 DEF 的另外两边的长度应是cm cm 或cm cm 或cm cm 三种可能 总结升华 总结升华 一定要深刻理解 对应 若题中没有给出图形 要特别注意是否有图形的分类 6 如图所示 已知 ABC 中 AD 是高 矩形 EFGH 内接于 ABC 中 且长边 FG 在 BC 上 矩形相邻两 边的比为 1 2 若 BC 30cm AD 10cm 求矩形 EFGH 的面积 思路点拨 思路点拨 利用已知条件及相似三角形的判定方法及性质求出矩形的长和宽 从而求出矩形的面积 解 解 四边形 EFGH 是矩形 EH BC AEH ABC AD BC AD EH MD EF 矩形两邻边之比为 1 2 设 EF xcm 则 EH 2xcm 由相似三角形对应高的比等于相似比 得 EF 6cm EH 12cm 总结升华 总结升华 解决有关三角形的内接矩形 内接正方形的计算问题 经常利用相似三角形 对应高的比等于 相似比 和 面积比等于相似比的平方 的性质 若图中没有高可以先作出高 举一反三举一反三 变式 1 ABC 中 DE BC M 为 DE 中点 CM 交 AB 于 N 若 求 解 解 DE BC ADE ABC M 为 DE 中点 DM BC NDM NBC 1 2 总结升华 总结升华 图中有两个 字形 已知线段 AD 与 AB 的比和要求的线段 ND 与 NB 的比分别在这两个 字形 利用 M 为 DE 中点的条件将条件由一个 字形转化到另一个 字形 从而解决问题 类型四 相似三角形的应用类型四 相似三角形的应用 7 如图 我们想要测量河两岸相对应两点 A B 之间的距离 即河宽 你有什么方法 方案 1 如上左图 构造全等三角形 测量 CD 得到 AB CD 得到河宽 方案 2 思路点拨 思路点拨 这是一道测量河宽的实际问题 还可以借用相似三角形的对应边的比相等 比例式中四条线段 测出了三条线段的长 必能求出第四条 如上右图 先从 B 点出发与 AB 成 90 角方向走 50m 到 O 处立一标杆 然后方向不变 继续向前走 10m 到 C 处 在 C 处转 90 沿 CD 方向再走 17m 到达 D 处 使得 A O D 在同一条直线上 那么 A B 之间的 距离是多少 解 解 AB BC CD BC ABO DCO 90 又 AOB DOC AOB DOC BO 50m CO 10m CD 17m AB 85m 答 答 河宽为 85m 总结升华 总结升华 方案 2 利用了 型基本图形 实际上测量河宽有很多方法 可以用 型基本图形 借 助相似 也可用等腰三角形等等 举一反三举一反三 变式 1 如图 小明欲测量一座古塔的高度 他站在该塔的影子上前后移动 直到他本身影子的顶端正 好与塔的影子的顶端重叠 此时他距离该塔 18 m 已知小明的身高是 1 6 m 他的影长是 2 m 1 图中 ABC 与 ADE 是否相似 为什么 2 求古塔的高度 解 解 1 ABC ADE BC AE DE AE ACB AED 90 A A ABC ADE 2 由 1 得 ABC ADE AC 2m AE 2 18 20m BC 1 6m DE 16m 答 答 古塔的高度为 16m 变式 2 已知 如图 阳光通过窗口照射到室内 在地面上留下 1 5m 宽的亮区 DE 亮区一边到窗下的墙 脚距离 CE 1 2m 窗口高 AB 1 8m 求窗口底边离地面的高 BC 思路点拨 思路点拨 光线 AD BE 作 EF DC 交 AD 于 F 则 利用边的比例关系求出 BC 解 解 作 EF DC 交 AD 于 F 因为 AD BE 所以又因为 所以 所以 因为 AB EF AD BE 所以四边形 ABEF 是平行四边形 所以 EF AB 1 8m 所以m 类型五 相似三角形的周长与面积类型五 相似三角形的周长与面积 8 已知 如图 在 ABC 与 CAD 中 DA BC CD 与 AB 相交于 E 点 且 AE EB 1 2 EF BC 交 AC 于 F 点 ADE 的面积为 1 求 BCE 和 AEF 的面积 思路点拨 思路点拨 利用 ADE BCE 以及其他有关的已知条件 可以求出 BCE 的面积 ABC 的边 AB 上 的高也是 BCE 的高 根据 AB BE 3 2 可求出 ABC 的面积 最后利用 AEF ABC 可求出 AEF 的面积 解 解 DA BC ADE BCE S ADE S BCE AE2 BE2 AE BE 1 2 S ADE S BCE 1 4 S ADE 1 S BCE 4 S ABC S BCE AB BE 3 2 S ABC 6 EF BC AEF ABC AE AB 1 3 S AEF S ABC AE2 AB2 1 9 S AEF 总结升华 总结升华 注意 同底 或等底 三角形的面积比等于这底上的高的比 同高 或等高 三角形的面积比等于对 应底边的比 当两个三角形相似时 它们的面积比等于对应线段比的平方 即相似比的平方 举一反三举一反三 变式 1 有同一三角形地块的甲 乙两地图 比例尺分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 园艺艺术花卉艺术
- 心理危机处遇细则
- 化工厂事故安全处理程序
- 促进员工创新意识
- 地产销售团队管理规程
- 2024年高校自主招生真题及解析
- 智能家居产品推广策略方案
- 房地产企业项目风险评估报告模版
- 水利工程施工项目管理实务
- 弱电解质溶液实验操作详解
- 村干部饮水安全培训总结课件
- 安全生产治本攻坚三年行动半年工作总结
- 单招备考科学方案
- 《工程勘察设计收费标准》(2002年修订本)
- 隧道开挖施工讲解课件
- 第三单元名著导读《朝花夕拾之二十四孝图》-部编版语文七年级上册
- 最新人教版四年级英语上册课件(完美版)Review of Unit 5
- 掌骨骨折查房课件
- 大学食堂装饰装修方案
- 工资结清证明(模板)
- 矿山档案(台帐) 表格参照模板参考范本
评论
0/150
提交评论