求二次函数解析式的基本方法及练习题.doc_第1页
求二次函数解析式的基本方法及练习题.doc_第2页
求二次函数解析式的基本方法及练习题.doc_第3页
求二次函数解析式的基本方法及练习题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.求二次函数解析式的基本方法及练习题二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。熟练地求出二次函数的解析式是解决二次函数问题的重要保证。 二次函数的解析式有三种基本形式:1、一般式:y=ax+bx+c (a0)。2、顶点式:y=a(xh)+k (a0),其中点(h,k)为顶点,对称轴为x=h。3、交点式:y=a(xx)(xx) (a0),其中x,x是抛物线与x轴的交点的横坐标。求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。探究问题,典例指津:例1、已知二次函数的图象经过点和求这个二次函数的解析式分析:由于题目给出的是抛物线上任意三点,可设一般式y=ax+bx+c (a0)。解:设这个二次函数的解析式为y=ax+bx+c (a0)依题意得: 解这个方程组得:这个二次函数的解析式为y=2x+3x4。例2、已知抛物线的顶点坐标为,与轴交于点,求这条抛物线的解析式。分析:此题给出抛物线的顶点坐标为,最好抛开题目给出的,重新设顶点式y=a(xh)+k (a0),其中点(h,k)为顶点。解:依题意,设这个二次函数的解析式为y=a(x4)1 (a0)又抛物线与轴交于点。a(04)1=3 a=这个二次函数的解析式为y=(x4)1,即y=x2x+3。例3、如图,已知两点A(8,0),(2,0),以AB为直径的半圆与y轴正半轴交于点C。求经过A、B、C三点的抛物线的解析式。分析:A、B两点实际上是抛物线与x轴的交点,所以可设交点式y=a(xx)(xx) (a0),其中x,x是抛物线与x轴的交点的横坐标。解:依题意,设这个二次函数的解析式为y=a(x+8)(x2)又连结AC、BC,利用射影定理或相交弦定理的推论易得:OC=ACBC=82 OC=4即C(0,4)。a(0+8)(02)=4 a=这个二次函数的解析式为y=(x+8)(x2),即y=xx+4。变式练习,创新发现1、在图的方格纸上有A、B、C三点(每个小方格的边长为1个单位长度) (l)在给出的直角坐标系中分别写出点A、B、C的坐标; (2)根据你得出的A、B、C三点的坐标,求图象经过这三点的二次函数的解析式2、已知抛物线的顶点坐标为,与轴交于点,求这条抛物线的解析式。3、已知抛物线过A(2,0)、B(1,0)、C(0,2)三点。求这条抛物线的解析式。)4. 根据下列条件求二次函数解析式(1)若函数有最小值-8,且abc=12(-3)(2)若函数有最大值2,且过点A(-1,0)、B(3,0)(3)若函数当x-2时y随x增大而增大(x-2时,y随x增大而减小),且图象过点(2,4)在y轴上截距为-2参考答案:1、(1)A(2,3);B(4,1);C(8,9)。 (2)y=x4x+9。2、y=(x2)+1,即y=x4x+5。3、y=(x+2)(x1),即y=xx+2。4.分析:(1)由abc=12(-3)可将三个待定系数转化为求一个k即设a=k,b=2k,c=-3k(2)由抛物线的对称性可得顶点是(1,2)(3)由函数性质知对称轴是x=-2解:(1)设y=ax2bx+c abc=12(-3)设a=k,b=2k,c=-3k 有最小值-8解析式y=2x2+4x-6(2)图象过点A(-1,0)、B(3,0),A、B两点均在x轴上,由对称性得对称轴为x=1又函数有最大值2,顶点坐标为(1,2),设解析式为y=a(x-1)22(3)函数当x-2时y随x增大而增大,当x-2时y随x增大而减小对称轴为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论