




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
余庆县实验中学九年级 下 数学教案 上课时间2014 年 月 日 第 周 星期 总第 课时 备课人授课班级九 班 教学内容1 1 1 1 实数的有关概念实数的有关概念 教学目标 1 使学生复习巩固有理数 实数的有关概念 2 了解有理数 无理数以及实 数的有关概念 理解数轴 相反数 绝对值等概念 了解数的绝对值的几何意义 3 会求一个数的相反数和绝对值 会比较实数的大小 4 画数轴 了解实数与数 轴上的点一一对应 能用数轴上的点表示实数 会利用数轴比较大小 教学重点教学重点 有理数 无理数 实数 非负数概念 相反数 倒数 数的绝对值 概念 教学难点教学难点实数的分类 绝对值的意义 非负数的意义 教学准备教学准备 多媒体课件 课课 堂堂 教教 学学 程程 序序 设设 计计设计意图设计意图 一 一 中考考点清单中考考点清单 考点考点 1 1 实数的相关概念 高频考点 实数的相关概念 高频考点 1 正负数及其意义 2 数轴 规定了 和单位长度的直线叫做数轴 任何实数 都可以用数轴上唯一的一个点来表示 即实数与数轴上的点是一一对应的 3 相反数 1 如果两个数只有 不同 那么其中一个数叫做另一个数的相反数 如 与 2 互为相反数 3 的相反数是 3 2 一般地 a的相反数是 a 特别地 0 的相反数是 0 如 2014 的相反数 是 2014 3 若a b互为相反数 则 a b 0 4 在数轴上 表示互为相反数 0 除外 的两个点 位于原点两侧 并且 到原点的距离相等 4 绝对值 1 概念 一般地 数轴上表示a的点与原点的距离叫做数a的绝对值 记 作 2 性质 a a 0 即 a 0 a 0 a a 0 5 倒数 实数a a 0 的倒数为 特别地 0 没有倒数 倒数是其本身的数是 或 6 无理数 1 概念 无限不循环小数叫做无理数 2 常见的几种无理数 根号型 某些三角函数 构造型 及某些含 的数 课 堂 教 学 程 序 设 计设计意图 考点考点 2 2 实数及其分类实数及其分类 实数 有理数和无理数统称为实数 2 实数的分类 1 按定义分类 2 按正负分类 考点考点 3 3 科学记数法 高频考点 科学记数法 高频考点 1 科学记数法 把一个数记成 a 10n的形式 其中 1 a 10 n 是整数 2 近似数和有效数字 近似数 是指根据精确度取其接近准确数的值 取近似数的原则是 四舍五入 有效数字 从左边第一个不是 0 的数字起 到精确到的数位止 所 有的数字 都叫做这个数字的有效数字 考点考点 4 4 平方根 算术平方根和立方根 平方根 算术平方根和立方根 1 平方根 算术平方根 2 立方根 非负数 非负数 1 定义 0 和所有的正数统称为非负数 2 性质 1 所有非负数均大于 0 或等于 0 2 几个非负数的和为 0 则这几个非负数各自为 0 二 二 常考题型剖析常考题型剖析 见课件 见课件 类型一 实数的相关概念 类型二 科学记数法 类型三 无理数 负数的识别 三 巩固练习 1 中考总复习讲练册 P2 3 基础过关题 2 选作题 中考总复习讲练册 P3 能力提升 教学反思 余庆县实验中学九年级 下 数学教案 上课时间2014 年 月 日 第 周 星期 总第 课时 备课人授课班级九 班 教学内容1 2 1 2 实数的大小和运算实数的大小和运算 教学目标 1 理解乘方 幂的有关概念 掌握有理数运算法则 运算委和运算顺序 能熟练地进行有理数加 减 乘 除 乘方和简单的混合运算 2 复习巩固有理数的运算法则 灵活运用运算律简化运算能正确进行实 数的加 减 乘 除 乘方运算 教学重点教学重点 实数的加 减 乘 除 乘方 开方的混合运算 绝对值 非负数 的有关应用 教学难点教学难点 实数的加 减 乘 除 乘方 开方的混合运算 绝对值 非负数 的有关应用 教学准备教学准备 多媒体课件 课课 堂堂 教教 学学 程程 序序 设设 计计设计意图设计意图 一 一 中考考点清单中考考点清单 考点考点 1 1 实数的运算 实数的运算 四则运算的法则 1 加法 2 减法 3 乘法 4 除法 2 常见实数运算类型及法则 运算法则举例 零次幂 任何非零实数的零次幂为 即 负整 数指 数幂 任何非零有理数的负整数指数幂是它的 指数次幂的倒数 即 a 0 p为整数 1 的奇 偶幂 1 的奇数次幂为 1 的偶数次幂为 3 实数运算步骤 考点考点 2 2 实数的大小比较 实数的大小比较 1 数轴比较法 2 性质比较法 3 作差比较法 4 平方比较法 课 堂 教 学 程 序 设 计设计意图 二 二 常考题型剖析常考题型剖析 见课件 见课件 类型一类型一 实数的运算 重点 实数的运算 重点 例例 1 1 14 14 原创 计算 原创 计算 思路点拨 根据去绝对值法则和负整数指数幂以及零指数幂的运算法 则化简 再由特殊角的锐角三角函数计算即可 解题模板解题模板 变式题变式题 1 1 13 13 湘西州 计算湘西州 计算 类型二类型二 实数的大小比较 实数的大小比较 例例 2 2 13 13 宜宾 下列各数中宜宾 下列各数中 最小的数是最小的数是 A A 2 2 B B 3 3 C C 1 31 3 D 0D 0 变式题变式题 2 2 13 13 钦州 比较大小钦州 比较大小 1 1 2 2 填 填 或或 三 巩固练习 1 中考总复习讲练册 P4 5 基础过关题 2 选作题 中考总复习讲练册 P5 能力提升 教学反思 10 1 1 2014 4cos60 3 1 1 42sin30 3 余庆县实验中学九年级 下 数学教案 上课时间2014 年 月 日 第 周 星期 总第 课时 备课人授课班级九 班 教学内容1 3 1 3 整式整式 教学目标 1 在具体情境中进一步理解用字母表示数的意义 能分析简单问题的数量关系 并用代数式表示 2 理解代数式的含义 能解释一些简单代数式的实际背景或几 何意义 体会数学与现实世界的联系 3 会求代数式的值 能根据代数式的值推断 代数式反映的规律 4 会借助计算器探索数量关系 解决某些问题 教学重点教学重点能分析简单问题的数量关系 并用代数式表示 会求代数式的值 教学难点教学难点 探索数量关系 解决某些问题 教学准备教学准备 多媒体课件 课课 堂堂 教教 学学 程程 序序 设设 计计设计意图设计意图 一 一 中考考点清单中考考点清单 考点考点 1 1 代数式及其求值代数式及其求值 1 代数式 把数与表示数的字母用运算符号连接而成的式子叫代数式 2 列代数式 用含有数 字母及运算符号的式子把问题中的数量关系表示出来 就是 列代数式 3 代数式求值 考点考点 2 2 整式的相关概念整式的相关概念 1 单项式 字母与字母或数字与字母的 叫做单项式 一个单项式中 所有字母 的指数的和叫做这个单项式的次数 单独的一个数或一个字母 单项式 如 2a是单项式 a 单项式 填 是 或 不是 2 多项式 几个 的和叫做多项式 组成多项式的每个单项式叫做多项式的 项 多项式中次数最高的项的次数 叫做这个多项式的次数 如 代数式 是 次 项式 3 整式 和 统称为整式 考点考点 3 3 整式的运算整式的运算 1 整式的加减运算 1 同类项 所含 相同 并且 的指数也相同的项叫做同类 项 所有常数项都是同类项 2 合并同类项 把多项式中的同类项合并成一项 叫做合并同类项 合并 同类项时 把 相加 所含字母和字母的指数不变 如 3 整式加减法的运算法则 先去括号 再合并同类项 课 堂 教 学 程 序 设 计设计意图 去括号法则去括号法则 1 括号前是 号 把括号去掉时 原括号里各项的符号都不变 2 括号前是 号 把括号和它前面的 号去掉 原括号里各项符 号都要改变 2 幂的运算 a 0 m n都是整数 名称运算法则公式表示举例 同底数幂 的乘法 底数不变 指数相加 同底数幂 的除法 底数不变 指数相减 幂的乘方底数不变 指数相乘 积的乘方 等于各因数分 别乘方的积 3 整式的乘法运算 单项式乘以单项式 系数 同底数幂分别相乘 作为积的因式 只在一个单项式 里含有的字母 则连同它的指数作为积的一个因式 单项式乘以多项式 多项式乘以多项式 用一个多项式的每一个项分别乘以另一个多项式的每一项 再把所得的积相加 乘法公式 4 整式的除法运算 单项式除以单项式 将系数 同底数幂分别相除 作为商的一个因式 对于只在被除式中 含有的字母 则连同它的指数作为商的一个因式 如 多项式除以单项式 用多项式的每一项除以这个单项式 再把所得的商相加 如 5 整式混合运算及求值的一般解题步骤 二 二 常考题型剖析常考题型剖析 见课件 见课件 类型一 代数式求值 类型二 整式的运算 类型三 整式化简求值 三 巩固练习 1 中考总复习讲练册 P7 基础过关题 2 选作题 中考总复习讲练册 P7 能力提升 教学反思 mnm n aaa mnm n aaa mnm nmn aaa mnp ab mpnp ab mpnp ab m abc mambmc ab ab 22 ab 222 2abaabb 余庆县实验中学九年级 下 数学教案 上课时间2014 年 月 日 第 周 星期 总第 课时 备课人授课班级九 班 教学内容1 4 1 4 因式分解因式分解 教学目标 1 了解分解因式的意义 会用提公因式法 平方差公式和完全平方公式 直接用 公式不超过两次 分解因式 指数是正整数 2 通过乘法公式 的逆向变形 进一步发展学生观察 归 22 ab abab 222 2abaabb 纳 类比 概括等能力 发展有条理的思考及语言表达能力 教学重点教学重点 掌握用提取公因式法 公式法分解因式 教学难点教学难点 根据题目的形式和特征恰当选择方法进行分解 以提高综合解题能力 教学准备教学准备 多媒体课件 课课 堂堂 教教 学学 程程 序序 设设 计计设计意图设计意图 一 一 中考考点清单中考考点清单 考点一 分解因式的概念 因式分解 就是把一个多项式化为几个整式的 的形式 分解因式 要进行到每一个因式都不能再分解为止 考点二 分解因式的方法 1 提公因式法 2 运用公式法 3 十字相乘法 4 分组分解法 5 求根公式法 二次三项式 ax2 bx c a x x1 x x2 因式分解的基本步骤 因式分解的基本步骤 对任意多项式分解因式 都必须首先考虑提取公因式 对任意多项式分解因式 都必须首先考虑提取公因式 对于二项式 考虑应用平方差公式分解 对于三项式 考虑应用完对于二项式 考虑应用平方差公式分解 对于三项式 考虑应用完 全平方公式或十字相乘法 求根公式法分解 全平方公式或十字相乘法 求根公式法分解 再考虑分组分解法 再考虑分组分解法 检查 特别看看多项式因式是否分解彻底 检查 特别看看多项式因式是否分解彻底 把下列各式分解因式 1 4x2 16y2 2 81a4 b4 x3y3 2x2y2 xy 课 堂 教 学 程 序 设 计设计意图 4 2x y 2 2 2x y 1 5 x2y2 xy 12 6 2x2 5x 2 7 x 1 x 5 4 考点三 综合应用考点三 综合应用 1 若 9x2 mxy 16y2 是完全平方式 那么 m 的值是 2 计算 3 若 a b c 是三角形三边的长 则代数式 a2 b2 c2 2ab 的值 A 大于零 B 小于零 C 大于或等于零 D 小于或等于零 二 归纳总结二 归纳总结 分解因式时常见的思维误区 分解因式时常见的思维误区 1 1 提公因式时 其公因式应找字母指数最低的 而不是以首项为准提公因式时 其公因式应找字母指数最低的 而不是以首项为准 2 2 若有一项被全部提出 括号内的项 若有一项被全部提出 括号内的项 1 1 易漏掉 易漏掉 3 3 分解不彻底 如保留中括号形式 还能继续分解等 分解不彻底 如保留中括号形式 还能继续分解等 三 巩固练习 1 中考总复习讲练册 P8 9 基础过关题 2 选作题 中考总复习讲练册 P9 能力提升 教学反思 余庆县实验中学九年级 下 数学教案 上课时间2014 年 月 日 第 周 星期 总第 课时 备课人授课班级九 班 教学内容1 5 1 5 分式分式 教学目标 1 了解分式 分式方程的概念 进一步发展符号感 2 熟练掌握分式的基本性质 会进行分式的约分 通分和加减乘除四则运算 发展学生的合情推理能力与代数恒 等变形能力 3 能解决一些与分式有关的实际问题 具有一定的分析问题 解决 问题的能力和应用意识 4 通过学习能获得学习代数知识的常用方法 能感受学 习代数的价值 教学重点教学重点分式的意义 性质 运算与分式方程及其应用 教学难点教学难点 分式方程及其应用 教学准备教学准备 多媒体课件 课课 堂堂 教教 学学 程程 序序 设设 计计设计意图设计意图 一 一 中考考点清单中考考点清单 考点考点 1 1 分式的概念及其性质分式的概念及其性质 1 分式的概念 形如 A B A B是整式 B中含有字母 且B 0 的式子 叫做分式 温馨提示 1 分式有意义 在分式 A B 中 当分母 B 0 时 分式 A B 有意义 2 分式无意义 在分式 A B 中 当分母 B 0 时 分式 A B 无意义 3 分式的值为零 分式 A B 的值为零的条件是分子 A 0 且分母 B 0 2 分式的性质 1 分式的基本性质 A B M 是整式 且 M 0 2 约分 把分式的分子与分母的 约去 这样的分式变形叫做分 式的约分 最简分式 分子 分母无公因式的分式 3 通分 把几个异分母的分式化成与原来分式相等的同分母分式 4 通分要先确定各分式的公分母 一般取各分母的所 有因式的最高次幂的积作公分母 课 堂 教 学 程 序 设 计设计意图 考点考点 2 2 分式的运算分式的运算 运算法则数学表达式举例 同分母分式相加减 分母 不变 分子相加减 加 减 法 异分母分式相加减 先通 分 同乘以各分母的最小 公倍数 再按同分母分式 加减法则进行运算 乘法 两分式相乘 分子与分子 相乘 分母与分母相乘 除法 分式等于然后用分式乘法 法则进行运算 分式化简求值题的一般步骤分式化简求值题的一般步骤 第一步 若有括号的 先计算括号内的分式运算 括号内如果是异分母 加减运算时 需将异分母分式通分化为同分母分式运算 然后将分子合并同 类项 把括号去掉 简称 去括号 第二步 若有除法运算的 将分式中除号 后面的式子分子分母颠 倒 并把这个式子前的 变为 保证几个分式之间除了 就只有 或 简称 除法变乘法 第三步 计算分式乘法运算 利用因式分解 约分来计算乘法运算 第四步 最后按照式子顺序 从左到右计算分式加减运算 直到化为最 简形式 第五步 将所给数值代入求值 代入数值时要注意使原分式有意义 二 二 常考题型剖析常考题型剖析 见课件 见课件 类型一 分式化简 类型二 分式化简求值 三 巩固练习 1 中考总复习讲练册 P10 11 基础过关题 2 选作题 中考总复习讲练册 P11 能力提升 教学反思 ab cc ab abba 2 1 11 x xx a ca c b db d A A A 22 aba abab ababb ab abaab A aca d bdb c A 22 aba abab ababb ab abaab A 余庆县实验中学九年级 下 数学教案 上课时间2014 年 月 日 第 周 星期 总第 课时 备课人授课班级九 班 教学内容1 6 1 6 二次根式二次根式 教学目标 1 理解平方根 立方根 算术平方根的概念 会用根号表示数的平方根 立方根和 算术平方根 会求实数的平方根 算术平方根和立方根 2 了解二次根式 最简二 次根式 同类二次根式的概念 会辨别最简二次根式和同类二次根式 掌握二次根 式的性质 会化简简单的二次根式 能根据指定字母的取值范围将二次根式化简 3 掌握二次根式的运算法则 能进行二次根式的加减乘除四则运算 会进行简单的 分母有理化 教学重点教学重点使学生掌握二次根式的有关概念 性质及根式的化简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 推拿治疗学复习附答案详解【夺分金卷】
- 基因抗体检测技术在病毒学中的临床应用-洞察及研究
- 数字藏品在虚拟现实领域的应用与创新发展报告2025
- 教育咨询报价方案
- 潮流课件教学课件
- 家用水表施工方案
- 夹心砼墙施工方案
- 建筑构建供暖方案设计要求
- 防洪建筑方案设计图纸
- 美容春季活动策划方案主题
- 统编版语文四年级上册第三单元 连续细致观察 准确生动表达单元任务群整体公开课一等奖创新教学设计
- 【部编版】新人教小学语文五年级上册-中华成语千字文(打印稿)
- 小区物业服务投标方案(技术标)
- 电力营销考试题库
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 智鼎在线测评题库答案2024
- 高等数学绪论课件
- 《生产部月报模板》课件
- 二十四节气与养生
- 怎样引导初中生克服数学学习的心理障碍
- 化工行业档案管理制度
评论
0/150
提交评论