




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的基本概念整式的基本概念 1 1 代数式的有关概念 代数式的有关概念 代数式 用基本的运算符号 包括加 减 乘 除 乘方 开方 把数 表示数的字母连 结而成的式子叫做代数式 单独一个数或一个字母也是代数式 2 2 整式的有关概念 整式的有关概念 1 单项式的定义 都是数与字母的积的代数式叫做单项式 说明 判断一个代数式是不是单项式 主要是根据代数式中数字和字母间是否都是乘法运 算关系 如 x y2 就不是一个单项式 a2是一个单项式 因为 a2可以看作是 a a 特别地 单独的一个数或单独的一个字母也都是单项式单独的一个数或单独的一个字母也都是单项式 如 3 0 3 5 x 2 x 等都是单项式 2 单项式次数 一个单项式中 所有字母的指数和叫做这个单项式的次数 说明说明 在单项式中 系数只与数字因数有关 次数只与字母有关 如 x3yz4的系数是 1 次 数为 3 1 4 8 4 多项式的定义 几个单项式的和叫做多项式 5 多项式的次数 一个多项式中 次数最高的项的次数叫做这个多项式的次数 说明说明 在确定多项式的次数时 应先计算出多项式的每一项的次数 次数最大的项的次数 作为该多项式的次数 如 多项式 x3 x2y2 x 中 单项式 x3的次数是 3 单项式 x2y2的 次数是4 单项式x 的次数是1 所以多项式x3 x2y2 x 的次数是4 6 多项式的项数 一个多项式中有几个单项式就有几项 每一个单项式就是一项 说明说明 多项式的项 包括符号 如多项式 5 3x2中 二次项是 3x2 7 常数项的定义 在多项式中 不含有字母的项叫做多项式的常数项 8 降幂排列 把一个多项式按某一个字母的指数从大到小的顺序排列起来 叫做把多 项式按这个字母降幂排列 9 升幂排列 把一个多项式按某一个字母的指数从小到大的顺序排列起来 叫做把多 项式按这个字母升幂排列 说明 说明 把多项式按升幂或降幂排列时 一定要弄清是针对哪个字母的排列 排列时只看这 个字母的指数 而后按照加法交换律交换项的位置 对于不同的字母 排列后的顺序往往 不同 切记重新排列多项式时 各项一定要带着符号移动位置 如 x3 2x4y 7xy3 y4 7 2x4y x3 7xy3 y4 7 7 y4 7xy3 x3 2x4y y4 7xy3 2x4y x3 7 7 x3 2x4y 7xy3 y4 其中 是按 x 的降幂排列 是按 x 的升幂排列 是按 y 的降幂排列 是按 y 的升 幂排列 10 整式的定义 单项式和多项式统称整式 说明说明 知道一个代数式 不论是单项式还是多项式 都一定是整式 反之 如果已知一个 代数式是整式 那么它或者是单项式 或者是多项式 二者必具其一 如单项式 3x2 x 等都是整式 多项式 3 x x3 x 1 等都是整式 在整式 2x x4 1 中 2x 是单项式 x4 1 是多项式 探究引导探究引导 2 16 b 是二次单项式 这里要注意 是一个常数 不是一个字母 所以单项式 中只有一个字母 b 它的指数是 2 2 16 b 就是一个二次单项式 代数式 4a 4b 是单项式 4a 4b 的和 像这样的几个单项式的和所形成的代数式 我们把 它叫做多项式 每个单项式就是这个多项式的一项 多项式 4a 4b 中的项是 4a 和 4b 要注意多项式的项包括符号 所以第二项是 4b 在一个多项式中 次数最高项的次数 叫做这个多项式的次数 1 3 x2y 这一项在 1 3 x2y 2y 1 中次数最高 因此我们把 1 3 x2y 的次数 3 作为多项式 1 3 x2y 2y 1 的次数 即 1 3 x2y 2y 1 是一个三次三项式 二 方法频道二 方法频道 由解题理解知识 由知识学会解题由解题理解知识 由知识学会解题 1 对对单项式 多项式 整式进行判断判断 例例 1 判断下列各代数式 哪些是单项式 哪些是多项式 哪些不是整式 1 3xy2 2 2x3 1 3 2 1 x y 1 4 a2 5 0 6 y x2 7 3 2xy 8 x2 1 9 x2 x 1 1 10 1 1 x 解解 单项式有 1 3xy2 4 a2 5 0 7 3 2xy 多项式有 2 2x3 1 3 2 1 x y 1 不是整式的有 6 y x2 8 x2 1 9 x2 x 1 1 10 1 1 x 知识体验 只有知识体验 只有数字与字母的乘积 这样的代数式是单项式 几个单项式的和组成多项式 单项式和多项式都是整式 在数字和字母之间只出现了乘法 加法 减法 可转化为加法 的运算 这样的代数式就是整式 没有出现 2 x 即 x 2 或 x 2 即 2 x 这样的式子 那么 2 x x 2 是整式吗 2 x 可以写成 2 1 x 所以 2 x 是单项式 而 2 x 是数字与字母的商 所以不是单项式 更不是整式 所以整式最显著的特征是字母不能作分母 所以 6 y x2 8 x2 1 9 x2 x 1 1 10 1 1 x 这几个代数式分母中含有字母 就不是整式 例例 2 填空 1 多项式 2x4 3x5 2 4是 次 项式 最高次项的系数是 四次项的系数是 常数项是 补足缺项后按字母 x 升幂排列得 2 多项式 a3 3ab2 3a2b b3是 次 项式 它的各项的次数都是 按字母 b 降幂排列得 解 1 五 三 3 2 2 4 2 4 0 x 0 x2 0 x3 2x4 3x5 2 三 四 3 b3 3ab2 3a2b a3 解题技巧解题技巧 多项式应看作是省略括号的和的形式 因此 当确定多项式的项时 应包括符 号 另外 圆周率 是一个常数 回答多项式是几次几项式时 数字要大写 如五次三项 式 不能写成 5 次 3 项式 补足缺项 是把升 或降 幂排列中缺少次数的项的系数用零 表示补入式中 移动多项式的某一项的位置时 要连同前面的符号一起移动 对含有两个 以上字母的多项式 一般按其中的某一个字母的指数大小顺序排列 本题是按规定的字母 指数大小排列 三 例题频道三 例题频道 一 题型分类全析 一 题型分类全析 1 与代数式有关的题型 与代数式有关的题型 例例 1 用代数式表示 1 把温度是 t 的水加热到 100 水温升高了 2 一个两位数 个位数字是 a 十位数字是 b 则这个两位数可表示为 3 用字母表示两个连续奇数为 4 若正方体的棱长是 a 1 则正方体的表面积为 思维直现思维直现 1 温度差别就是末了温度 初始温度 2 一个两位数的表示方法 十位数字 10 各位数字 3 连续奇数之间相差 2 4 正方体的表面积 棱长 棱 长 6 解 解 1 100 t 2 10b a 3 2n 1 2n 1 n 为整数 阅读笔记阅读笔记 用代数式表示 要仔细读题 找到题目中的等量关系 将需要表示的量表 达出来 书写代数式时要注意 1 数与字母 字母与字母相乘时乘号省略不写 数字要 写在字母前面 如 10b a 数字因数是 1 或 1 时 1 省略不写 如 100 t 2 带分数与字母相乘时要化成假分数 如 ab 2 1 1要写成ab 2 3 的形式 3 除号要改写成 分数线 如 a b 要写成 b a 4 书写单位时要把代数式用括号括起来 如 1 2 ab 2 R 平方米 题评解说题评解说 列代数式是学习整式的基础 有代数式才能研究整式 而列代数式用到的知识 很多 比如面积公式 温差等生活知识 对学生能力要求较高 难度视题目而定 可能很 简单也可能比较难 列代数式是后续学习列方程解决实际问题的基础 所以要掌握好 建议建议 对列代数所用到的知识要努力回忆和复习 要多练才能熟练 2 单项式 多项式的概念有关的题型 单项式 多项式的概念有关的题型 例例 2 一个五次多项式 它的任何一项的次数都 A 小于 5 B 等于 5 C 不小于 5 D 不大于 5 思维直现思维直现 由于多项式的次数是 多项式中次数最高的项的次数 因此五次多项式中 次 数最高的项是五次的 其余的项的次数可以是五次的 也可以是小于五次的 却不能是大 于五次的 因此 五次多项式中的任何一项都是不大于 5 次的 解答 选 D 例例 3 说出下列各多项式分别是几次几项式 1 3x 23 2 a2b 2a 3b 4 3 2 82 2 xx 4 a3 b3 1 3 5 5 x6 x5 3x2 12x a 6 2 xy 3 1 x3 y 4 思维直现思维直现 需要找出多项式的每一项 算出每一项的次数 然后回答是几次几项式 解 1 多项式 3x 23是一次二项式 2 多项式 a2b 2a 3b 4 是三次四项式 3 因为 2 82 2 xx 2 1 x2 x 4 所以多项式 2 82 2 xx 是二次三项式 4 因为 a3 b3 1 3 5 3 5 a3 3 5 b3 3 5 所以多项式 a3 b3 1 3 5 是三次三项式 5 多项式 x6 x5 3x2 12x a 是六次五项式 6 因为 2 xy 3 1 x3 y 4 2xy 3 2 x3 2y 2 4 所以多项式 2 xy 3 1 x3 y 4 是三次 四项式 阅读笔记阅读笔记 当所给的多项式不能直观地辨别其次数和项数时 就需要对其整理变形 使其 成为标准形式的多项式 如第 3 4 6 小题 变形后便容易多了 另外 常数项中的指 数 不能做为多项式的次数 如第 1 6 小题中 23 4 不影响多项式的次数 题评解说题评解说 判断多项式是几次几项式的问题 是理解多项式概念中的常规题 具体在解答 时会遇到具体困难 如多项式给出不规范要先变形 有常数项中有指数的干扰 这增加了 本题的难度 建议建议 要概念清晰 排除干扰 二 思维重点突破 二 思维重点突破 例例 5 若 3axym是关于 x y 的单项式 且系数为 6 次数为 3 则 a m 思维直现思维直现 关于 x y 的单项式 说明只有 x y 才是单项式中的字母 a 只是系数的一部 分 所以 3a 是系数 也就是 6 即 3a 6 解得 a 2 而单项式的次数是 x y 的指数和 1 m 也就是 3 因此 1 m 3 得 m 2 解解 a 2 m 2 阅读笔记阅读笔记 单项式是数与字母的积 数字因数是单项式的系数 所有字母的指数和是单项 式的次数 在本题中 x y 才是单项式中的字母 a 只是系数的一部分 这两点一定要理解 到位 例例 6 当 x 为何值时 下列多项式可化简为关于 y 的一次单项式 1 3 2 x 5y 5 2 2 43 yx 6 思维直现思维直现 把一个多项式转化为关于某一字母的单项式 就是指除符合题目要求的项保留 外 其余各项的和等于 0 如 1 中 要使多项式 3 2 x 5y 5 化简为关于 y 的一次单项式 只保留 5y 这一项 其余各项的和为 0 即使 3 2 x 5 0 的 x 的值即为所要求的 x 的值 解 1 由 3 2 x 5 0 即 3 2 x 5 得 x 2 15 所以当 x 2 15 时 多项式 3 2 x 5y 5 可化简为关于 y 的一次单项式 2 多项式 2 43 yx 6 可化为 2 1 x 2 3 y 4 由 2 1 x 4 0 即 2 1 x 4 得 x 8 所以当 x 8 时 多项式 2 43 yx 6 可化简为关于 y 的一次单项式 建议建议 要多项式可化简为关于 y 的一次单项式 就要能够将含 y 的项从多项式中分离出来 其它部分的和是 0 即可 整式的运算复习指导 一 知识结构图 一 知识结构图 二 有关的运算法则 二 有关的运算法则 一 一 幂的运算性质 幂的运算性质 1 am an m n 都是正整数 2 am an a 0 m n 都是正整数 且 m n 特别地 a0 1 a 0 a p 1 p a a 0 p 是正整数 3 am n m n 都是正整数 4 ab n n 是正整数 5 平方差公式 a b a b 6 完全平方公式 a b 2 答案 1 am n 2 am n 3 amn 4 an bn 5 a b a b a2 b2 6 a b 2 a2 2ab b2 二 二 整式的乘法法则 整式的乘法法则 1 单项式相乘法则 把单项式的系数与相同的字母分别相乘 对于只在一个单项式中含 有的字母则连同它的次数作为积的一个因式 2 多项式相乘 把一个多项式的每一项分别乘以另一个多项式的每一项 可以参考单项 式的乘法法则 把所得到的积相加减 有同类项的要合并同类项 3 运算技巧的运用 整体求值 联系待定系数法求未知的系数 次数和其中含有的字母 的值 三 考点例析 三 考点例析 一 一 考查基本运算法则 公式等 考查基本运算法则 公式等 例 1 11 佛山 计算 2 2 baba 答案 22 252baba 例 2 11 孝感 下列运算中正确的是 A 336 xyx A B 2 35 mm C 2 2 1 2 2 x x D 633 aaa 答案 D 例 3 11 广州 下列式子中是完全平方式的是 A 22 baba B 22 2 aa C 22 2bba D 12 2 aa 答案 D 点评 对照完全平方公式 可以看出 12 2 aa 222 21 1 1 aaa 而其它三个选项都是错误的 二 二 同类项的概念 同类项的概念 例 4 若单项式 2am 2nbn 2m 2与 a5b7是同类项 求 nm的值 点评 考查同类项的概念 由同类项定义可得 25 227 mn nm 解出即可 求出 3 1 nm 所以 1 1 3 3 m n 三 三 整式的化简与运算 整式的化简与运算 例5 11江西 先化简 再求值 2 1 1 x xxx 其中 1 2 x 解 2 1 1 x xxx 22 2 1 xxx 22 21xxx 21x 当 1 2 x 时 原式 1 210 2 四 四 定义新运算 定义新运算 例 6 08 孝感 在实数范围内定义运算 其规则为 22 abab 则方程 43 13x 的解为x 17 6 点评 两次运用题目中的新运算公式 1 22 43437 2 22 7713xx 所以 22 71336x 求出 6x 例 7 08 宿迁 对于任意的两个实数对 ba和 dc 规定 当dbca 时 有 ba dc 运算 为 bdacdcba 运算 为 dbcadcba 设p q都是实数 若 4 2 2 1 qp 则 2 1 qp 1 由 1 2 2 4 p q 得出 2 24 p q 所以 2 2 pq 2 1 2 p q 1 2 2 2 12 2 2 3 0 五 整体思想的运用 五 整体思想的运用 例 8 计算 234 xyyxxy 分析 这里的底数为 xy yx 而这两个式子恰为相反数 我们可以把 yx 看做一个字母 利用负数的偶次方是正数的原则变化 2 xy 4 xy 两项的 底数为 yx 所以有 解 原式 234 yxyxyx 2 3 4 yx 9 yx 点评 底数是多项式且以固定的形式 或者某一形式的相反数 时出现 这类幂的乘 积运算问题 可以把固定的形式看做一个整体 常常变化次数是偶次的幂的底数为它的相 反数 这样变化不出现 便于运算 应注意变为同底数的幂的一般方法的灵活运用 拓展思维 拓展思维 六 巧妙变化幂的底数 指数六 巧妙变化幂的底数 指数 例 9 已知 23 a 326 b 求 310 2 ab 的值 点评 根据现有的知识水平 很难求出a b的值来 所以我们可以把 2a 5 32 2 bb 中的 5 2 b分别看作一个整体 通过整体变换进行求值 则有 310 2 ab 310 22 ab 35 2 2 2 ab 2 35 2 2 ab 2 3 2 32 ab 32 36972 例 10 计算 99100 0 125 8 分析 显然 0 125 与 8 的乘积是 1 而 1 高次方值容易得出答案来 1 的偶次方是 1 1 的奇次方是 1 所以变化 100 8为 99 88 则有 原式 9999 0 125 88 99 0 125 8 8 1 8 8 真题训练真题训练 1 11 南京 计算 2 3 ab的结果是 A 5 abB 6 abC 35 a bD 36 a b 2 11 上海 下列运算中 计算结果正确的是 A x x3 2x3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4. 抛体运动的规律说课稿高中物理人教版2019必修 第二册-人教版2019
- Unit 5 Animal friends Further study(说课稿)-译林版(2024)英语七年级下册
- 13.1 轴对称 教学设计-人教版数学八年级上册
- 3.3 从不同方向观察立体图形 说课稿 2024--2025学年北京版(2024)七年级数学上册
- 大专入学申请书
- (2024年秋季版)七年级道德与法治下册 第一单元 我是自己的主人 第一课 你会玩吗 第3框 我们都会玩说课稿 人民版
- 不申请意外保险申请书
- Unit 4 第5课时Section B (project)说课稿 -人教版(2025)七年级下册英语
- 失窃物品索赔申请书
- 退伙协议书样书5篇
- 物业创星级服务汇报材料
- 产前诊断中心进修汇报
- 110kV变电站初步设计与规划方案指南
- 中试平台建设管理办法
- 精神科常见疾病及护理
- 河北计算机单招数学试卷
- 脊髓微环境调控-洞察及研究
- 2025至2030全球及中国两轮组合仪表行业产业运行态势及投资规划深度研究报告
- 工业机器人讲课件
- 部编版三年级语文上册日积月累
- 第11章综合与实践低碳生活课件人教版七年级数学下册
评论
0/150
提交评论