




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数据挖掘在移动通信业客户关系管理中的应用研究 摘 要 随着移动通信业飞速发展 国内电信业重组 和全业务运营时代的到来 国内电信市场竞争格局发生着 巨大的变化 客户选择的机会大大增加 迫使各家运营商 围绕客户的争夺战愈演愈烈 运营商的经营模式逐渐从 技术驱动 向 市场驱动 客户驱动 转化 这就要 求运营商采取以客户为中心的策略 根据客户的实际需求 提供多样化 层次化 个性化的服务解决方案 移动运营 商在长期的业务运营过程中 积累了大量宝贵的数据信息 本文研究利用数据挖掘技术 在客户关系管理过程中有效 地提取出有价值的信息 从而提升企业核心竞争力 提升 客户满意度 忠诚度 关键词 数据挖掘 通信业 关系管理 客户行为 一 数据挖掘在移动通信业客户关系管理中的意义 由于移动通信市场庞大 客户在消费上存在较大的差 异和层次性 企业必须根据客户特点对客户进行合理细分 并在此基础上对不同细分市场提供有针对性的营销策略 才能在竞争中立于不败之地 与此同时 运营商积累的客 户数据量正在以指数速度增长 面对海量客户数据 传统 的方法已无法进行有效的客户细分 在客户关系管理的流 程中 为了准确 及时地进行经营决策 必须充分获取并 利用相关的数据信息对决策过程进行辅助支持 近几年迅 速发展起来的数据挖掘技术就是实现这一目标的重要手段 数据挖掘技术的发展实现了数据挖掘在通信企业客户关系 管理 客户细分中的实际应用 提高了移动通信企业的核 心竞争力 运用数据挖掘技术 可以对现有客户群体进行 分析 通过区分客户市场 挖掘客户信息 发现潜在的消 费趋势或动向 从而有针对性地设计产品和服务 开展精 细化营销 在满足客户需求的同时 提高企业的利润 从 而真止为企业高效营销提供支持 二 数据挖掘在移动通信业客户关系管理中的应用现 状 全球移动通信发展虽然只有短短 20 余年的时间 但它 已经创造了人类历史上的伟大奇迹 截止 2015 年底 全球 移动通信用户达到 60 亿 国外移动通信企业使用数据挖掘 技术成功解决了一系列的商业问题 如美国 AT T 公司利用 数据挖掘建立详细的客户分类档案 对现有客户提供更好 的差异性服务 并建立客户流失预测模型 尽可能准确地 预报客户流失的概率和可能性 以便尽早采取相应的措施 进行客户挽留 防止现有客户的流失 英国电信公司为在 经营过程中获得更高的投资回报 选用 SPSS 的数据挖掘产 品 Clementine 通过分析用户数据 建立模型来预测客户使 用某种业务的倾向 通过应用该模型使运营商能更好地了 解其客户以及他们在电信市场的行为特征 从而为销售入 员提供了有可能使用该项业务的潜在客户的清单 同时使 直邮活动在这些客户中的回应率提高了一倍 除此之外 世界上一些主要的移动通信企业都已经采用了针对移动通 信行业的数据仓库系统 如 Sprint 公司 法国电信 澳大利 亚电信和比利时电信等 我国移动通信客户的发展也很迅速 随着国内电信行 业重组 电信体制的激烈变革 竞争急速加剧 使得各电 信企业着力于开拓新增市场 发展新客户 而对已有客户 的维系和管理似乎重视不够 或者是注意到了又没有好的 方法 显得有点无能为力 造成的结果是 新客户发展迅 速但存量老客户维系比较困难 客户发展成本较高 增量 不增收 一方面企业投入大量时间 人力 财力去发展新 客户 而且新客户往往是低端客户 另一方面因客户流失 管理的不完善导致现有客户由于不满意而流失 长此以往 在电信企业中出现了 增量不增收 的现象 如何保留住 既有客户 以及如何由这些客户获得最大的收益 是国内 电信企业面临的重要课题 我国电信运营商在多年的业务 支撑系统 BOSS 建设中 积累了大量的原始业务数据 这些数据涉及到通信计费 市场营销 业务收入 销售渠 道 网络优化 网络规划等各个方面 如何有效的利用这 些已有的数据 实施客户关系管理 己经摆到了国内电信 运营商的议事日程上 中国移动过去已经建立起一个有效的信息支撑系统 包括 BOSS 系统 客服系统 网管系统 结算系统等等 这 些系统中存储着大量数据 目前 对这些基础数据的操作 仍然是以数据的汇总 统计 展现为主 而客户关系管理 数据的研究由于涉及到上千万的客户基础资料 这些客户 上亿条的业务工单 百亿条的产品使用清单等超大规模的 数据 还涉及各种类型客户的各种复杂原因 如工作变动 住址变迁 价格敏感 弃卡重入网 服务投诉等 如果还 是通过做一些传统的 简单的数理统计 对于数据的利用 仅限于数据的表层信息 而没有去挖掘数据和数据之间更 加深层次的信息 是不可能从如此海量的数据和信息中找 到客户关系管理这一复杂问题的规律的 因此 针对现实 需求 亟需引入数据挖掘技术 从海量的业务系统数据中 提炼客户行为中最本质的特征和规律 三 研究数据挖掘在移动通信业客户关系管理中的应 用领域 移动通信企业是典型的数据密集型企业 在营业 计 费 网管 客服 结算等数据库系统每天都要生成大量的 数据 这些数据中蕴涵了客户需求 客户行为 企业运营 状况等大量的信息 是企业的重要资产 需要将这些数据 真正转化为知识与资产 必须借助数据挖掘技术 一 客户群体分类分析 客户分类是将大量的客户 分成不同的类 在每个类里的客户具有相似的属性 数据 挖掘可以帮助运营商进行客户分类 通过从用户的服务消 费记录中发现一些行为模式和行为习惯 并参照预先设定 的计算用户价值的方法和标准来评测用户价值的高低 进 而对不同的用户采取不同的营销策略 以提高客户的满意 度 提高现有客户的价值 提升经营决策的准确性和可行 性 二 客户消费模式分析 随着信息技术的突飞猛进 和电信竞争的不断加剧 各公司不断推出新业务和新服务 希望用户使用多种业务 客户消费模式分析是利用数据挖 掘技术对客户历年来话务 数据业务使用情况以及客户档 案资料等相关数据进行关联分析 结合客户的分类 进行 交叉营销 客户消费模式分析一般是从分析现有用户的消 费记录数据开始 得出现有用户消费习惯的数据 然后用 预测模型对数据进行评估和优化 最后得出结论 从而提 高交叉销售的成功率 三 客户欠费分析和动态防欺诈 通过数据挖掘 总结各种骗费 欠费行为的内在规律 建立一套欺诈和欠 费行为的规则库 当客户的话费行为与该库中规则吻合时 系统可以提示运营商相关部门采取措施 从而降低运营商 的损失风险 四 客户流失分析 客户流失是竞争日益激烈的市 场中移动运营商面临的一大难题 利用数据挖掘技术 对 已有的客户的流失数据 进行数据理解 数据准备 构建 模型等主要步骤的数据分析 从而建立起客户流失预测模 型 以此获取即将离网的用户信息 并针对高流失概率客 户群提出针对性的挽留策略 降低客户流失的发生率 客户是电信企业生存和发展的根基 电信运营商的竞 争归根结底是对客户的竞争 因此 客户关系管理越来越 受到各大运营商的关注 在这种背景下 利用数据挖掘技 术作为有效的客户关系管理工具 从电信运营商大量的历 史数据中挖掘分析客户消费的行为特征 并在市场预测的 基础上制定有针对性的市场营销计划 准确预测用户的行 为特征趋势 从而采取有效措施进行客户营销 提高客户 满意度和忠诚度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化标准创新-洞察及研究
- 部队安全保密培训内容课件
- 九年级历史第一次测试试卷
- 广西壮族自治区钦州市第四中学2025-2026学年高三上学期开学考试历史试卷(含答案)
- 2024-2025学年内蒙古巴彦淖尔市乌拉特前旗八年级(上)期末数学试卷(含部分答案)
- 基于元学习的个性化信息检索方法-洞察及研究
- 基于拓扑优化的剪式平衡支撑结构轻量化设计对施工效率的影响评估
- 基于工业4.0的减速机支架智能化制造工艺与质量控制体系重构
- 基于AI驱动的动态阻抗匹配算法在宽带增益平坦度中的应用
- 国际标准差异背景下前盖密封条出口认证的技术适配策略
- 绿化施肥基本知识培训课件
- 2025-2026学年人教版(2024)小学美术二年级上册《指尖撕撕乐》教学设计
- 安全驾驶教育培训课件
- 六年级上册心理健康教育教案-正确认识我自己 北师大版
- 2025北京京剧院招聘10人备考题库及答案解析
- 防护用品使用课件
- 贵州省桐梓县狮溪铝多金属(含锂)普查项目环境影响评价报告表
- 吉林省梅河口市2025年上半年公开招聘辅警试题含答案分析
- 日间手术课件
- 灭火和应急疏散预案演练制度(足浴会所)
- 清产核资业务培训课件
评论
0/150
提交评论