



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 上海第二工业大学专升本考试大纲上海第二工业大学专升本考试大纲 高等数学一高等数学一 高等数学高等数学 专升本入学考试注重考察学生基础知识 基本技能和思维能力 运算能力 专升本入学考试注重考察学生基础知识 基本技能和思维能力 运算能力 以及分析问题和解决问题的能力 考试时间以及分析问题和解决问题的能力 考试时间 2 小时 满分小时 满分 150 分 分 考试内容 一 一 函数 极限与连续函数 极限与连续 一 考试内容 函数的概念与基本特性 数列 函数极限 极限的运算法则 两个重要极限 无穷小的 概念与阶的比较 函数的连续性和间断点 闭区间上连续函数的性质 二 考试要求 1 理解函数的概念理解函数的概念 了解函数的奇偶性 单调性 周期性 有界性 了解反函数的概念 理解复合函数的概念理解复合函数的概念 理解初等函数的概念理解初等函数的概念 会建立简单实际问题的函数关系 2 理解数列极限 函数极限的概念理解数列极限 函数极限的概念 不要求做给出 求N或 的习题 了解极限性质 唯一性 有界性 保号性 和极限的两个存在准则 夹逼准则和单调有界准则 3 掌握函数极限的运算法则 熟练掌握极限计算方法掌握函数极限的运算法则 熟练掌握极限计算方法 掌握两个重要极限 并会用两个重 要极限求极限 4 了解无穷小 无穷大 高阶无穷小 等价无穷小的概念 会用等价无穷小求极限 5 理解函数连续的概念理解函数连续的概念 了解函数间断点的概念 会判别间断点的类型 第一类可去 跳 跃间断点与第二类间断点 6 了解初等函数的连续性 了解闭区间上连续函数的性质 会用性质证明一些简单结论 二 导数与微分二 导数与微分 一 考试内容 导数概念及求导法则 隐函数与参数方程所确定函数的导数 高阶导数 微分的概念与 运算法则 二 考试要求 1 理解导数的概念及几何意义理解导数的概念及几何意义 了解函数可导与连续的关系 会求平面曲线的切 法线方 2 程 2 掌握导数的四则运算法则和复合函数的求导法则掌握导数的四则运算法则和复合函数的求导法则 掌握基本初等函数的求导公式 会熟掌握基本初等函数的求导公式 会熟 练求函数的导数练求函数的导数 3 掌握隐函数与参数方程所确定函数的求导方法 一阶 掌握隐函数与参数方程所确定函数的求导方法 一阶 掌握取对数求导法 掌握取对数求导法 4 了解高阶导数的概念 掌握初等函数的一阶 二阶导数的求法掌握初等函数的一阶 二阶导数的求法 会求简单函数的 n 阶导 数 5 理解微分的概念理解微分的概念 了解微分的运算法则和一阶微分形式不变性 会求函数的微分 三 中值定理与导数应用三 中值定理与导数应用 一 考试内容 罗尔中值定理 拉格朗日中值定理 洛必达法则 函数单调性与极值 曲线凹凸性与拐 点 二 考试要求 1 理解罗尔中值定理 拉格朗日中值定理理解罗尔中值定理 拉格朗日中值定理 对定理的分析证明不作要求 会用中值定理证 明一些简单的结论 2 掌握用洛必达法则求掌握用洛必达法则求 0 0 0 1 0 0等不定式极限的方法等不定式极限的方法 3 理解函数极值概念 掌握用导数判定函数的单调性和求函数极值的方法理解函数极值概念 掌握用导数判定函数的单调性和求函数极值的方法 会利用函数单 调性证明不等式 会求较简单的最大值和最小值的应用问题 4 会用导数判断曲线的凹凸性 会求曲线的拐点 四 不定积分四 不定积分 一 考试内容 原函数与不定积分概念 不定积分换元法 不定积分分部积分法 二 考试要求 1 理解原函数与不定积分的概念和性质理解原函数与不定积分的概念和性质 2 掌握不定积分的基本公式 换元积分法和分部积分法掌握不定积分的基本公式 换元积分法和分部积分法 淡化特殊积分技巧的训练 对于 有理函数积分的一般方法不作要求 对于一些简单有理函数可作为两类积分法的例题作适当 训练 五 定积分及其应用五 定积分及其应用 一 考试内容 定积分的概念和性质 积分变上限函数 牛顿 莱布尼兹公式 定积分的换元积分法和 3 分部积分法 无穷区间上的广义积分 定积分的应用 求平面图形的面积与旋转体体积 二 考试要求 1 理解定积分的概念理解定积分的概念 了解定积分的性质和积分中值定理 2 理解积分变上限函数的概念和性质 掌握牛顿 莱布尼兹公式理解积分变上限函数的概念和性质 掌握牛顿 莱布尼兹公式 能正确运用该公式计算 定积分 3 掌握定积分的换元法和分部积分法掌握定积分的换元法和分部积分法 4 了解定积分的元素法 会计算平面图形的面积和旋转体的体积 5 理解无穷区间上广义积分的概念 并会求无穷区间上的广义积分 六 微分方程六 微分方程 一 考试内容 微分方程的基本概念 可分离变量微分方程与齐次方程 一阶线性微分方程 二阶常系 数线性微分方程 二 考试要求 1 了解微分方程以及微分方程的阶 解 通解 初始条件和特解等概念 2 掌握可分离变量微分方程的解法掌握可分离变量微分方程的解法 3 会解齐次方程 可转化为可分离变量微分方程的方法 4 了解一阶线性微分方程的常数变异法 掌握一阶线性微分方程的解法掌握一阶线性微分方程的解法 5 了解二阶线性微分方程解的结构 掌握二阶常系数齐次线性微分方程求解方法掌握二阶常系数齐次线性微分方程求解方法 6 会用待定系数法求自由项为简单函数 x n P x e 的二阶常系数非齐次线性微分方程的特解 方法 七 空间解析几何向量代数七 空间解析几何向量代数 一 考试内容 空间直角坐标系 向量及其运算 空间平面及其方程 空间直线及其方程 二次曲面 二 考试要求 1 理解空间直角坐标系的概念 理解向量的概念及其表示理解空间直角坐标系的概念 理解向量的概念及其表示 会求空间两点的距离 2 掌握向量的运算 线性运算 数量积 向量积 掌握向量的运算 线性运算 数量积 向量积 了解两个向量垂直 平行的条件 3 会求平面方程 直线方程 4 掌握平面与平面 直线与平面 直线与直线平行与垂直的条件 掌握平面与平面 直线与平面 直线与直线平行与垂直的条件 会求点到平面的距离 5 了解曲面方程的概念 了解常用二次曲面的方程及其图形 4 八 多元函数微分学八 多元函数微分学 一 考试内容 二元函数概念 二元函数极限 连续 偏导数 全微分 多元函数的求导法则 隐函数 求导公式 多元函数微分学的几何应用 多元函数极值 二 考试要求 1 理解二元函数的概念理解二元函数的概念 了解多元函数的概念 2 了解二元函数的极限和连续的概念 会求一些简单二元函数的极限 3 理解二元函数偏导数与全微分的概念理解二元函数偏导数与全微分的概念 了解全微分存在的必要条件与充分条件 掌握多掌握多 元函数偏导数与全微分的计算方法元函数偏导数与全微分的计算方法 4 掌握多元复合函数一阶偏导数的求法掌握多元复合函数一阶偏导数的求法 5 会求解隐函数的一阶偏导数 6 了解曲线的切线与法平面 曲面的切平面与法线等概念 并会求它们的方程 7 理解二元函数极值与条件极值的概念理解二元函数极值与条件极值的概念 会求简单的二元函数的极值 了解拉格朗日乘数 法 会求一些比较简单的最大值与最小值的应用问题 九 多元函数积分学九 多元函数积分学 一 考试内容 二重积分与三重积分的概念与性质 二重积分与三重积分的计算 曲线积分 格林公式 二 考试要求 1 理解二重积分的概念与性质理解二重积分的概念与性质 2 掌握二重积分的计算方法 直角坐标 极坐标 掌握二重积分的计算方法 直角坐标 极坐标 3 了解三重积分的概念 会计算简单的三重积分 直角坐标 柱面坐标 4 理解两类曲线积分的概念理解两类曲线积分的概念 了解两类曲线积分的性质及两类曲线积分的关系 掌握两类掌握两类 曲线积分的计算方法曲线积分的计算方法 6 掌握格林公式 掌握平面曲线积分与路径无关的条件及应用掌握格林公式 掌握平面曲线积分与路径无关的条件及应用 十 无穷级数十 无穷级数 一 考试内容 常数项级数的概念和性质 常数项级数敛散性的判别 幂级数的概念和性质 函数的 幂级数展开 二 考试要求 5 1 理解无穷级数以及收敛 发散 和的概念理解无穷级数以及收敛 发散 和的概念 了解无穷级数的基本性质及收敛的必要条件收敛的必要条件 2 掌握几何级数和掌握几何级数和p 级数的收敛性级数的收敛性 3 掌握正项级数的比值审敛法 掌握正项级数的比值审敛法 了解正项级数的比较审敛法 4 掌握交错级数的莱布尼兹定理掌握交错级数的莱布尼兹定理 理解绝对收敛与条件收敛的概念理解绝对收敛与条件收敛的概念 会判断交错级数的绝会判断交错级数的绝 对收敛与条件收敛 对收敛与条件收敛 5 理解幂级数的概念理解幂级数的概念 掌握幂级数收敛半径 收敛区间 收敛域及和函数的求法掌握幂级数收敛半径 收敛区间 收敛域及和函数的求法 6 会利用 sin cos ln 1 1 x exxxx 的麦克劳林展开式将一些简单函数展开成幂级数 四 教材 1 新世纪高级应用型人才培养系列教材 2 高等数学 上 下册 同济大学应用数学系主编 高等教育出版社 五 参考书 高等数学 第六版 上 下册 同济大学应用数学系主编
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 女性不孕不育合并子宫内膜异位症护理查房
- 工信部信息安全培训课件
- 变电土建复习测试卷含答案
- 矿长奖励基金管理办法
- 梅陇交警安全培训基地课件
- 工业安全防疫知识培训课件
- 2025年大学生国家安全知识竞赛题库及答案解析
- 2025年村镇后备干部考试题及答案
- 自媒体平台管理办法
- 高速公路绿化病虫害综合防治方案
- 规范权力运行方面存在问题及整改措施范文(五篇)
- 土壤退化与生态恢复课件
- 山东省海洋知识竞赛(小学组)考试题库大全-上(单选题汇总)
- 宝安区人民医院药品目录西药
- 岳阳楼记翻译
- 成语接龙上韩兴娥
- 股指期货基础知识测试试题及答案
- 小学生班干部竞选海报word模板
- 广告策划与创意课件改
- 零星维修批量发包企业入围项目服务方案
- 急诊手术处理流程
评论
0/150
提交评论