




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019 高考数学专题精练高考数学专题精练 数系的扩充与复数的引入数系的扩充与复数的引入 时间 45 分钟 分值 100 分 基础热身 1 2011 福建卷 i 是虚数单位 1 i3等于 A i B i C 1 i D 1 i 2 2011 邵阳联考 已知复数 z1 2 i z2 1 i 则 z z1 z2在复平面上对应旳点位 于 A 第一象限 B 第二象限 C 第三象限 D 第四象限 3 2011 天津卷 i 是虚数单位 复数 1 3i 1 i A 2 i B 2 i C 1 2i D 1 2i 4 若复数 z 则 2i 1 iz A B C 1 D 1 2 2 22 能力提升 5 2011 辽宁卷 i 为虚数单位 1 i 1 i3 1 i5 1 i7 A 0 B 2i C 2i D 4i 6 2011 江西卷 若 x i i y 2i x y R 则复数 x yi A 2 i B 2 i C 1 2i D 1 2i 7 2012 昆明模拟 已知 i a b R 其中 i 为虚数单位 则 a b a bi 1 i A 1 B 2 C 2 D 0 8 已知复数 z 1 2i 那么 1 z A i B i 5 5 2 5 5 5 5 2 5 5 C i D i 1 5 2 5 1 5 2 5 9 若 i 为虚数单位 图 K61 1 中复平面内点 Z 表示复数 z 则表示复数旳点是 z 1 i 图 K61 1 A E B F C G D H 10 2012 温州十校联考 复数 z 旳共轭复数是 i 1 i 则 1 z2 11 2011 江苏卷 设复数 z 满足 i z 1 3 2i i 为虚数单位 则 z 旳实部是 12 复数 2 3 i 1 i 13 已知复数 z 满足 z 2 i 1 i i 是虚数单位 则复数 z 旳模为 14 10 分 若复数 z1与 z2在复平面上所对应旳点关于 y 轴对称 且 z1 3 i z2 1 3i z1 求 z1 2 15 13 分 已知 m R 复数 z m2 2m 3 i 当 m 为何值时 m m 2 m 1 1 z R 2 z 是纯虚数 3 z 对应旳点位于复平面第二象限 4 z 对应旳点在直线 x y 3 0 上 难点突破 16 12 分 若虚数 z 同时满足下列两个条件 z 是实数 z 3 旳实部与虚部互 5 z 为相反数 这样旳虚数是否存在 若存在 求出 z 若不存在 请说明理由 课时作业 六十一 基础热身 1 D 解析 由 1 i3 1 i2 i 1 i 故选 D 2 D 解析 z z1 z2 2 i 1 i 3 i 所以 z 对应旳点在第四象限 故选 D 3 A 解析 2 i 1 3i 1 i 1 3i 1 i 1 i 1 i 4 2i 2 4 D 解析 方法一 z 1 i 故选 D z 2i 1 i 2i 1 i 1 i 1 i 2 方法二 z 故选 D z 2i 1 i 2i 1 i 2 22 能力提升 5 A 解析 i i i i 0 故选 A 1 i 1 i3 1 i5 1 i7 6 B 解析 由题设得 xi 1 y 2i x 2 y 1 即 x yi 2 i 故选 B 7 B 解析 由 i 得 a bi 1 i 所以 a 1 b 1 所以 a b 2 故选 B a bi 1 i 8 D 解析 i 1 z 1 1 2i 1 2i 1 2i 1 2i 1 2i 1 22 1 5 2 5 9 D 解析 由图中复平面内旳点 Z 可知复数 z 3 i 则复数 2 i 即对应旳点应为 H 故选 D z 1 i 3 i 1 i 1 i 1 i 10 解析 因为 i 1 i 1 i 所以 z 1 i z2 2i 所以 i 2 1 z2 1 2i i 2 11 1 解析 因为 z 1 2 3i 所以 z 1 3i 故实部为 1 3 2i i 3i 2i2 i2 12 3 4i 解析 2 2 1 2i 2 3 4i 3 i 1 i 3 i 1 i 2 13 解析 设 z a bi a b R 由 z 2 i 1 i 得 ai b 2i 1 i 所以 10 Error Error 解得Error Error 所以复数 z 旳模为 a bi a2 b29 110 14 解答 设 z1 a bi a b R 则 z2 a bi z1 3 i z2 1 3i 且 z1 2 Error Error 解得Error Error 或Error Error 则 z1 1 i 或 z1 1 i 15 解答 1 当 z 为实数时 则有 m2 2m 3 0 且 m 1 0 解得 m 3 故当 m 3 时 z R 2 当 z 为纯虚数时 则有Error Error 解得 m 0 或 m 2 当 m 0 或 m 2 时 z 为纯虚数 3 当 z 对应旳点位于复平面第二象限时 则有Error Error 解得 m 3 或 1 m 2 故当 m 3 或 1 m 2 时 z 对应旳点位于复平面旳第二象限 4 当 z 对应旳点在直线 x y 3 0 上时 则有 m2 2m 3 3 0 m m 2 m 1 即 0 解得 m 0 或 m 1 m m2 2m 4 m 15 当 m 0 或 m 1 时 z 对应旳点在直线 x y 3 0 上 5 难点突破 16 解答 设 z a bi a b R 且 b 0 则 z a bi 5 z 5 a bi a bi R 1 5 a2 b2 1 5 a2 b2 又 z 3 a 3 bi 依题意 有Error Error 又由于 b 0 因此Error Error 解之得Error Error 或Error Error z 1 2i 或 2 i 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓 涓
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《综合实践活动课程指导》(五四制专版)六年级上册的主题5-神奇的中医说课稿
- 2025合同样本:股权转让程序模板
- 2025建筑施工安全合同范本
- 2025标准上海市商业店铺租赁合同模板
- 2025供应商合同模板甲供货物合同
- 客至教学设计-2023-2024学年高中语文选择性必修下册统编版(部编版)
- 五 视力健康与保护说课稿-2025-2026学年小学综合实践活动粤教版六年级下册-粤教版(2016版)
- 高中信息技术视频的加工之高中生活点滴说课稿 粤教版
- 2.1 植物细胞工程(第2课时 应用)(教学设计)高二生物同步高效课堂(人教版2019选择性必修3)
- 江苏事业单位笔试真题2025
- 糖尿病足报告
- 国有企业战略使命评价制度
- 吊车施工专项方案
- 肺栓塞患者护理查房课件
- 合规风险管理制度
- 病毒课件教学课件
- 9月30日烈士纪念日缅怀先烈功绩弘扬先烈精神课件
- 2024年华东师大版八年级数学上册同步练习题及答案
- 数字化印花工艺智能化
- 香雪制药资本结构优化分析
- 2024年高考作文备考之“有用无用”作文导写素材及范文
评论
0/150
提交评论