工程力学课件完整可编辑版.ppt_第1页
工程力学课件完整可编辑版.ppt_第2页
工程力学课件完整可编辑版.ppt_第3页
工程力学课件完整可编辑版.ppt_第4页
工程力学课件完整可编辑版.ppt_第5页
已阅读5页,还剩199页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章静力学基本概念与物体受力分析第二章汇交力系第三章力偶系第四章平面任意力系第五章空间任意力系第六章静力学专题 桁架 摩擦 重心 第一篇静力学 静力学主要研究 物体的受力分析 力系的简化 力系的平衡条件及其应用 引言 静力学是研究物体在力系作用下平衡规律的科学 1 1静力学基本概念 1 2静力学公理 1 3约束与约束反力 1 4物体的受力分析与受力图 第一章静力学基本概念与物体受力分析 静力学 第一章静力学基本概念与物体受力分析 1 1静力学基本概念 是指物体相对于惯性参考系保持静止或作匀速直线运动的状态 一 刚体 就是在力的作用下 大小和形状都不变的物体 二 平衡 4 力的单位 国际单位制 牛顿 N 千牛顿 kN 静力学 三 力的概念 1 定义 2 力的效应 运动效应 外效应 变形效应 内效应 3 力的三要素 大小 方向 作用点 力是物体间的相互机械作用 静力学 力系 是指作用在物体上的一群力 等效力系 两个力系的作用效果完全相同 力系的简化 用一个简单力系等效代替一个复杂力系 合力 如果一个力与一个力系等效 则称这个力为力系的合力 平衡力系 物体在力系作用下处于平衡 我们称这个力系为平衡力系 静力学 1 2静力学基本公理 是人类经过长期实践和经验而得到的结论 它被反复的实践所验证 是无须证明而为人们所公认的结论 公理1二力平衡公理 作用于刚体上的两个力 使刚体平衡的必要与充分条件是 这两个力大小相等 F1 F2 方向相反F1 F2作用在同一直线上 作用于同一个物体上 公理 静力学 说明 对刚体来说 上面的条件是充要的 二力体 只在两个力作用下平衡的刚体叫二力体 对变形体 或多体中 来说 上面的条件只是必要条件 二力杆 静力学 在已知力系上加上或减去任意一个平衡力系 并不改变原力系对刚体的作用 作用于刚体上的力可沿其作用线移到同一刚体内的任一点 而不改变该力对刚体的效应 因此 对刚体来说 力作用三要素为 大小 方向 作用线 公理2加减平衡力系原理 推论1 力的可传性原理 静力学 公理3力的平行四边形法则 作用于物体上同一点的两个力可合成一个合力 此合力也作用于该点 合力的大小和方向由以原两力矢为邻边所构成的平行四边形的对角线来表示 力的三角形法则 FR FR 静力学 刚体受三力作用而平衡 若其中两力作用线汇交于一点 则另一力的作用线必汇交于同一点 且三力的作用线共面 必共面 在特殊情况下 力在无穷远处汇交 平行力系 推论2 三力平衡汇交定理 三力必汇交 且共面 也为平衡力系 又 二力平衡必等值 反向 共线 FR 静力学 公理4作用力和反作用力定律 等值 反向 共线 异体 且同时存在 例 吊灯 静力学 公理5刚化原理 变形体在某一力系作用下处于平衡 如将此变形体变成刚体 刚化为刚体 则平衡状态保持不变 公理5告诉我们 处于平衡状态的变形体 可用刚体静力学的平衡理论 静力学 1 3约束与约束反力 一 概念 位移不受限制的物体叫自由体 自由体 静力学 位移受限制的物体叫非自由体 非自由体 静力学 大小常常是未知的 方向总是与约束限制的物体的位移方向相反 作用点在物体与约束相接触的那一点 约束力特点 G 约束力 约束与非自由体接触相互产生了作用力 约束作用于非自由体上的力叫约束力或称为约束反力 约束 对非自由体的某些位移预先施加的限制条件称为约束 这里 约束是名词 而不是动词的约束 F G FN1 FN2 静力学 二 约束类型和确定约束反力方向的方法 1 柔索 由柔软的绳索 链条或皮带构成的约束 绳索类只能受拉 约束反力作用在接触点 方向沿绳索背离物体 静力学 F1 F2 约束力方向与所能限制的物体运动方向相反 约束力方向与所能限制的物体运动方向相反 F1 F2 柔绳约束 胶带构成的约束 柔索约束 柔绳约束 链条构成的约束 约束力方向与所能限制的物体运动方向相反 绳索 链条 皮带 柔索 约束力方向与所能限制的物体运动方向相反 静力学 约束反力作用在接触点处 方向沿公法线 指向受力物体 2光滑支承面约束 凸轮顶杆机构 固定铰支座 物体与固定在地基或机架上的支座有相同直径的孔 用一圆柱形销钉联结起来 这种构造称为固定铰支座 中间铰 如果两个有孔物体用销钉连接轴承 3光滑圆柱铰链约束 静力学 光滑圆柱铰链约束 圆柱铰链 A A 约束反力过铰链中心 用XA YA表示 静力学 固定铰支座 固定铰支座 固定铰支座 静力学 固定铰支座 中间铰 销钉 中间铰 简化表示 约束力表示 静力学 4活动铰支座 辊轴支座 在固定铰链支座的底部安装一排滚轮 可使支座沿固定支承面滚动 活动铰支座 活动铰支座 其它表示 活动铰支座 光滑圆柱铰链约束实例 固定铰链支座 活动铰链支座 A 空间 5光滑球铰链 反力是过球铰中心的FAx FAy FAz三个分力 6二力构件 二力构件 二力构件的约束力沿连杆两端铰链的连线 指向不定 通常假设受拉 翻斗车 二力构件 7 其它约束 约束反力垂直于滑道 导轨 指向亦待定 滑道 导轨 静力学 解决力学问题时 首先要选定需要进行研究的物体 即选择研究对象 然后根据已知条件 约束类型并结合基本概念和公理分析它的受力情况 这个过程称为物体的受力分析 1 4物体的受力分析和受力图 作用在物体上的力有 一类是主动力 如重力 风力 气体压力等 二类是被动力 即约束反力 一 受力分析 静力学 补 解除约束原理 当受约束的物体在某些主动力的作用下处于平衡 若将其部分或全部的约束除去 代之以相应的约束反力 则物体的平衡不受影响 意义 在解决实际物体的平衡问题时 可以将该物体所受的各种约束解除 而用相应的约束反力去代替它们对于物体的作用 这时 物体在所有主动力和约束力作用下 仍然保持平衡 但物体已经被抽象成为一个不受任何约束作用的自由体了 因而就可利用静力学所得出的关于自由刚体的平衡条件来解决受有各种不同约束的物体的平衡问题 静力学 画物体受力图主要步骤为 选研究对象 去约束 取分离体 画上主动力 画出约束反力 二 受力图 例1 G 静力学 例2 画出下列各构件的受力图 静力学 例2 画出下列各构件的受力图 A C D B E FA FB FC 静力学 例3 画出下列各构件的受力图 说明 三力平衡必汇交当三力平行时 在无限远处汇交 它是一种特殊情况 静力学 例4 尖点问题 静力学 例5 画出下列各构件的受力图 静力学 三 画受力图应注意的问题 除重力 电磁力外 物体之间只有通过接触才有相互机械作用力 要分清研究对象 受力体 都与周围哪些物体 施力体 相接触 接触处必有力 力的方向由约束类型而定 2 不要多画力 要注意力是物体之间的相互机械作用 因此对于受力体所受的每一个力 都应能明确地指出它是哪一个施力体施加的 1 不要漏画力 静力学 约束反力的方向必须严格地按照约束的类型来画 不能单凭直观或根据主动力的方向来简单推想 在分析两物体之间的作用力与反作用力时 要注意 作用力的方向一旦确定 反作用力的方向一定要与之相反 不要把箭头方向画错 即受力图一定要画在分离体上 4 受力图上不能再带约束 静力学 一个力 属于外力还是内力 因研究对象的不同 有可能不同 当物体系统拆开来分析时 原系统的部分内力 就成为新研究对象的外力 对于某一处的约束反力的方向一旦设定 在整体 局部或单个物体的受力图上要与之保持一致 5 受力图上只画外力 不画内力 6 同一系统各研究对象的受力图必须整体与局部一致 相互协调 不能相互矛盾 7 正确判断二力构件 静力学 本章作业 1 31 41 5 57 第二章汇交力系 工程力学 58 静力学 汇交力系 各力的作用线汇交于一点的力系 引言 研究方法 几何法 解析法 例 起重机的挂钩 力系分为 平面力系 空间力系 59 2 1汇交力系合成和平衡的几何法 2 2汇交力系合成和平衡的解析法 第二章汇交力系 60 静力学 2 1汇交力系合成与平衡的几何法 一 合成的几何法 1 两个共点力的合成 合力方向可应用正弦定理确定 由余弦定理 力的平行四边形法则 力的三角形法则 FR FR 61 静力学 2 任意个共点力的合成 力多边形法则 即 汇交力系的合力等于各分力的矢量和 合力的作用线通过各力的汇交点 即 结论 FR 62 静力学 二 汇交力系平衡的几何条件 在几何法求力系的合力中 合力为零意味着力多边形自行封闭 汇交力系平衡的充要条件是 力多边形自行封闭 或 力系中各力的矢量和等于零 汇交力系平衡的必要与充分的几何条件是 FR FR 63 静力学 例1 已知压路机碾子重P 20kN r 60cm 欲拉过h 8cm的障碍物 求 在中心作用的水平力F的大小和碾子对障碍物的压力 选碾子为研究对象 取分离体画受力图 解 NA FB FA 64 静力学 又由几何关系 当碾子刚离地面时FA 0拉力F 自重P及支反力FB构成一平衡力系 由平衡的几何条件 力多边形封闭 故 由作用力和反作用力的关系 碾子对障碍物的压力等于23 1kN F 11 5kN FB 23 1kN 所以 FB FB 65 静力学 例2 求当F力达到多大时 球离开地面 已知P R h 解 FB 0时为球离开地面 研究球 受力如图 作力三角形 解力三角形 66 静力学 研究块 受力如图 作力三角形 解力三角形 67 静力学 几何法解题步骤 选研究对象 画出受力图 作力多边形 求出未知数 几何法解题不足 计算繁 不能表达各个量之间的函数关系 68 静力学 力的三要素 大小 方向 作用点 线 大小 作用点 与物体的接触点方向 由 g三个方向角确定 由仰角 与俯角 来确定 一 力在空间的表示 2 2汇交力系合成与平衡的解析法 69 静力学 1 一次投影法 直接投影法 二 力在空间直角坐标轴上的投影 2 二次投影法 间接投影法 70 静力学 3 力在平面坐标轴上的投影 Fx F cosa Fy F sina A B y x Fx Fy F a o 说明 1 Fx的指向与x轴一致 为正 否则为负 2 力在坐标轴上的投影为标量 71 静力学 若以表示力沿直角坐标轴的正交分量 则 而 所以 三 力的解析表达式 72 静力学 四 合力投影定理 由图可看出 各分力在x轴和在y轴投影的和分别为 合力投影定理 合力在任一轴上的投影 等于各分力在同一轴上投影的代数和 FRx F2x F1x F3x F4x x y o 73 静力学 合力的大小 为该力系的汇交点 方向 作用点 五 汇交力系合成的解析法 1 平面汇交力系 74 静力学 即 合力等于各分力的矢量和 2 空间汇交力系的合成 为合力在x轴的投影 75 静力学 六 汇交力系平衡的解析法 平面汇交力系平衡的必要与充分条件是该力系的合力为零 平面汇交力系平衡的解析条件平面汇交力系的平衡方程 说明 两个方程可求解两个未知量 投影轴可任意选择 解题步骤 选择研究对象 画出研究对象的受力图 取分离体 列平衡方程 选投影轴 1 平面汇交力系的平衡 76 静力学 2 空间汇交力系的平衡 空间汇交力系平衡的充要条件是 力系的合力为零 即 空间汇交力系的平衡方程 说明 空间汇交力系只有三个独立平衡方程 只能求解三个未知量 上式中三个投影轴可以任取 只要不共面 其中任何两轴不相互平行 77 静力学 解 研究C 例3 已知AC BC l h P 求 FAC FBC 画出受力图 列平衡方程 h 78 静力学 79 静力学 解 研究AB杆 画出受力图 列平衡方程 例4 已知P 2kN求FCD FA 80 静力学 解平衡方程 由EB BC 0 4m 解得 FA FCD 81 静力学 例5 已知如图P Q 求平衡时 地面的反力FD 解 研究球 82 例6 已知 AB 3m AE AF 4m Q 20kN 求 绳BE BF的拉力和杆AB的内力 由C点 解 分别研究C点和B点 83 静力学 由B点 84 以A为研究对象 例7 2 9解 85 静力学 1 一般地 对于只受三个力作用的物体 且角度特殊时用几何法 解力三角形 比较简便 解题技巧及说明 3 投影轴常选择与未知力垂直 最好使每个方程中只有一个未知数 2 一般对于受多个力作用的物体 用解析法 5 解析法解题时 力的方向可以任意设 如果求出负值 说明力方向与假设相反 对于二力构件 一般先设为拉力 如果求出负值 说明物体受压力 4 对力的方向判定不准的 一般用解析法 86 静力学 本章作业 2 62 82 10 87 第三章力偶系 工程力学 88 力偶 大小相等 方向相反且作用线不重合的两个力组成的力系叫力偶 用 F F 表示 力偶的作用面 力偶臂 力偶系 作用在刚体上的一群力偶 力偶的作用效应 使刚体转动 由两个力共同作用引起 移动效应 取决于力的大小 方向 转动效应 取决于力矩的大小 方向 力的作用效应 力偶系 89 3 1力对点之矩 3 2力对轴之矩 3 3力偶矩矢 3 4力偶的等效条件和性质 3 5力偶系的合成与平衡 第三章力偶系 90 3 1力对点之矩 力偶系 一 平面中力对点的矩 力臂 矩心 平面内力对点之矩是代数量 不仅与力的大小有关 且与矩心位置有关 当F 0或h 0时 0 说明 力对点之矩不因力的作用线移动而改变 互成平衡的两个力对同一点之矩的代数和为零 91 3 1力对点之矩 力偶系 二 力对点的矩矢 力对点之矩矢等于矩心到该力作用点的矢径与该力的矢量积 力对点之矩矢是过矩心O的定位矢量 力对点之矩矢服从矢量的合成法则 力F对刚体产生绕O点转动效应取决于 转动效应的强度转动轴的方位 力F与矩心O所在平面法向 使刚体绕转动轴转动的方向 92 3 1力对点之矩 力偶系 二 力对点的矩矢 x x y y z z F O r 93 3 1力对点之矩 力偶系 三 合力矩定理 定理 合力对任一点之矩矢 等于所有各分力对同一点之矩矢的矢量和 平面力系内为代数和 已知 力系 F1 F2 F3 Fn 可以合成为一个合力FR 则 平面力系 94 F Fx Fy O x y x y 平面内力矩的解析表达式 95 解 用力对点的矩法 例1 已知 如图F Q l 求 和 应用合力矩定理 96 解 例2 已知 如图F R r 求 应用合力矩定理 97 解 例3 已知 如图q l 求 合力的大小和作用线位置 98 解 例4 已知 如图q l 求 合力的大小和作用线位置 99 力偶系 3 2力对轴之矩 一 力对轴之矩的概念与计算 100 定义 力对轴之矩是代数量 符号规定 右手法则 力对平行它的轴之矩为零 当力通过轴时 力对轴之矩为零 即力F与轴共面时 力对轴之矩为零 101 力对轴之矩是力使刚体绕该轴转动效应的度量 是代数量 其大小等于在垂直于转轴的平面内的分量的大小和它与转轴间垂直距离的乘积 其正负号按右手规则确定 102 故 二 力对点之矩与力对通过该点的轴之矩的关系 通过O点作任一轴z 则 由几何关系 103 定理 力对点的矩矢在通过该点的任意轴上的投影等于这力对于该轴的矩 这就是力对点之矩与对通过该点轴之矩的关系 又由于 所以力对点O的矩为 104 即 空间力系的合力对某一轴的矩 等于力系中所有各分力对同一轴的矩的代数和 三 合力矩定理 105 例4 已知 P 2000N C点在Oxy平面内 求 力P对三个坐标轴的矩 解 106 107 3 3力偶矩矢 力偶系 一 力偶效应的度量 设在刚体上作用有力偶 F F 现研究它对O点的转动效应 力偶 F F 对O点的转动效应可用一矩矢M来度量 力偶矩矢 力偶矩矢M与O点位置无关 是自由矢量 力偶矩矢由其模 方位和指向确定 108 3 3力偶矩矢 力偶系 二 力偶矩矢的确定 力偶矩矢 力偶矩矢的模 大小 力偶矩矢的方位 沿力偶作用面的法向 表示力偶作用面的方位 力偶矩矢的指向 按右手法则确定 表示力偶的转向 力偶矩矢的三要素 力偶矩的大小 作用面的方位和转向 109 三 平面力偶 代数量 力偶的作用面 力偶臂 力偶矩 m Fd 四 空间力偶 矢量 110 3 4力偶的等效条件和性质 力偶系 一 力偶的等效条件 力偶矩矢 性质1 力偶无合力 本身又不平衡 是一个基本力学量 力偶只能和力偶平衡 而不能和一个力平衡 两个力偶等效 力偶矩矢相等 二 力偶的性质 111 二 力偶的性质 性质2 力偶中两个力在任意坐标轴上投影之代数和为零 性质3 力偶中两力对任一点取矩之和恒等于力偶矩 而与矩心的位置无关 性质4 力偶可以在其作用面内任意移动或转动 或移到另一平行平面 而不影响它对刚体的作用效应 力偶系 112 性质5 只要保持力偶矩大小和转向不变 可以任意改变力偶中力的大小和相应力偶臂的长短 而不改变它对刚体的作用效应 力偶系 113 3 5力偶系的合成与平衡 设有两个力偶 由于力偶矩矢是自由矢量 可任意平行移动 故可将其按照矢量合成的方法进行合成 力偶系 一 力偶系的合成 114 对于n个力偶组成的力偶系 力偶系 对于n个力偶组成的平面力偶系 平面力偶系合成结果是一个合力偶 其力偶矩为各力偶矩的代数和 一 力偶系的合成 115 力偶系平衡的充要条件是 合力偶矩矢等于零 即所有各力偶矩矢的矢量和等于零 平面力偶系平衡的充要条件是 合力偶矩等于零 即所有各力偶矩的代数和等于零 力偶系的平衡方程 二 力偶系的平衡 116 例5 在一钻床上水平放置工件 在工件上同时钻四个等直径的孔 每个钻头的力偶矩为求工件的总切削力偶矩和A B端水平反力 解 各力偶的合力偶距为 117 根据平面力偶系平衡方程有 由力偶只能与力偶平衡的性质 力NA与力NB组成一力偶 118 例6 已知 M1 1kNm l 1m 求平衡时M2 解 AB CD 119 例7 已知 M1 3m 2 M2 m 2 CD l 求 AB AC杆所受力 解 CD C 120 本章作业 3 23 53 8 121 第四章平面任意力系 工程力学 122 静力学 第四章平面任意力系 平面任意力系 各力的作用线在同一平面内 既不汇交为一点又不相互平行的力系叫平面任意力系 平面任意力系 平面力偶系 平面汇交力系 合成 平衡 合成 平衡 FR Fi M Mi Mi 0 Fx 0 Fy 0 力线平移定理 123 第四章平面任意力系 4 1力线平移定理 4 2平面任意力系的简化 4 3平面任意力系的平衡条件和平衡方程 4 4平面平行力系的平衡方程 4 5静定与静不定问题 物体系统的平衡 124 静力学 4 1力线平移定理 力线平移定理 证 力 力系 但必须同时附加一个力偶 这个力偶的力偶矩等于原来的力 作用在刚体上点A的力 可以平行移到刚体上任一点B 对新作用点B的矩 125 静力学 力平移的条件是附加一个力偶M 且M与d有关 M F d 力线平移定理揭示了力与力偶的关系 力 力 力偶 力线平移定理的逆定理成立 力 力 力偶力线平移定理是力系简化的理论基础 力线平移定理可将平面任意力系转化为平面汇交力系和平面力偶系进行研究 说明 126 静力学 力系的主矢 力系中各力的矢量和 127 力系的主矩 力系中各力对任一点取矩的矢量和 128 力系等效定理 两个力系相互等效的充分与必要条件是主矢量相等 对任一点的主矩相等 适用范围 刚体 应用 力系的简化 静力学 零力系 力系的主矢量和对任一点的主矩均等于零 129 静力学 4 2平面任意力系向一点简化 平面任意力系 未知力系 平面力偶系 已知力系 平面汇交力系 已知力系 力 主矢量 力偶 主矩 FR F Mo M 向任一点O简化 作用在简化中心 作用在该平面上 FR 130 主矢 静力学 移动效应 大小 方向 简化中心 与简化中心位置无关 因主矢等于各力的矢量和 一般情况 131 静力学 主矩MO 转动效应 固定端 插入端 约束 雨搭 车刀 大小 简化中心 与简化中心有关 因主矩等于各力对简化中心取矩的代数和 132 静力学 固定端 插入端 约束的约束反力 认为Fi这群力在同一平面内 FAx FAy限制物体平动 MA为限制转动 FAx FAy MA为固定端约束反力 FRA方向不定可用正交分力FAx FAy表示 将Fi向A点简化得一力和一力偶 133 静力学 简化结果分析 合力矩定理 简化结果 主矢 主矩MO 下面分别讨论 0 MO 0 则力系平衡 下节专门讨论 0 MO 0 即简化结果为一合力偶 M MO此时刚体等效于只有一个力偶的作用 因为力偶可以在刚体平面内任意移动 故这时 主矩与简化中心O无关 0 MO 0 即简化为一个作用于简化中心的合力 这时 简化结果就是合力 这个力系的合力 此时与简化中心有关 换个简化中心 主矩不为零 134 静力学 合力的大小等于原力系的主矢合力的作用线位置 0 MO 0 为最任意的情况 此种情况还可以继续简化为一个合力 135 静力学 合力矩定理 平面任意力系的合力对作用面内任一点之矩等于力系中各力对于同一点之矩的代数和 合力矩定理 由于主矩 而合力对O点的矩 合力矩定理 由于简化中心是任意选取的 故此式有普遍意义 136 静力学 4 3平面任意力系的平衡条件与平衡方程 平面任意力系平衡的充要条件为 0 MO 0 力系平衡 平面任意力系的平衡方程 力系的主矢和主矩MO都等于零 137 静力学 例1 已知 q 4kN m F 5kN l 3m 25o 求 A点的支座反力 解 1 选AB梁为研究对象 2 画受力图 3 列平衡方程 求未知量 138 静力学 例2 已知 Q 7 5kN P 1 2kN l 2 5m a 2m 30o 求 BC杆拉力和铰A处的支座反力 解 1 选AB梁为研究对象 2 画受力图 139 静力学 例2 已知 Q 7 5kN P 1 2kN l 2 5m a 2m 30o 求 BC杆拉力和铰A处的支座反力 3 列平衡方程 求未知量 140 静力学 例2 已知 Q 7 5kN P 1 2kN l 2 5m a 2m 30o 求 BC杆拉力和铰A处的支座反力 3 列平衡方程 求未知量 141 静力学 3 列平衡方程 求未知量 142 静力学 二矩式 条件 x轴不垂直于AB连线 三矩式 条件 A B C不在同一直线上 只有三个独立方程 只能求出三个未知数 投影轴和矩心是任意选取的 一般先取矩 矩心选择在多个未知力的交点上 投影轴尽量与未知力垂直或平行 基本式 一矩式 平面任意力系的平衡方程 143 静力学 例3 已知 q a P qa M Pa 求 A B两点的支座反力 解 选AB梁为研究对象 画受力图 列平衡方程 求未知量 144 平衡的充要条件为 主矢FR 0主矩MO 0 静力学 4 4平面平行力系的平衡方程 平面平行力系 各力的作用线在同一平面内且相互平行的力系 设有F1 F2 Fn为一平行力系 向O点简化得 合力作用线的位置为 145 静力学 平面平行力系的平衡方程为 平面平行力系中各力在x轴上的投影恒等于零 即 平面平行力系只有两个独立方程 只能求解两个独立的未知数 146 静力学 例4 已知 P 20kN M 16kN m q 20kN m a 0 8m求 A B的支反力 解 研究AB梁 147 静力学 例5 已知 塔式起重机P 700kN W 200kN 最大起重量 尺寸如图 求 保证满载和空载时不致翻倒 平衡块Q 当Q 180kN时 求满载时轨道A B给起重机轮子的反力 分析 Q过大 空载时有向左倾翻的趋势 Q过小 满载时有向右倾翻的趋势 A B 148 静力学 限制条件 解 首先考虑满载时 起重机不向右翻倒的最小Q为 空载时 W 0 由 限制条件为 解得 因此保证空 满载均不倒Q应满足如下关系 当W 400kN时 Q的范围 解得 FA FB 149 静力学 求当Q 180kN 满载W 200kN时 FA FB为多少 解得 由平面平行力系的平衡方程可得 FA FB 150 静力学 4 5静定与静不定问题 物体系统的平衡 一 静定与静不定问题的概念 平面汇交力系 两个独立方程 只能求两个独立未知数 平面力偶系 一个独立方程 只能求一个独立未知数 平面平行力系 两个独立方程 只能求两个独立未知数 平面任意力系 三个独立方程 只能求三个独立未知数 151 静力学 独立方程数目 未知数数目时 是静不定问题 超静定问题 静定 未知数三个 独立方程数目 未知数数目时 是静定问题 可求解 静不定 未知数四个 静不定问题在材料力学 结构力学 弹性力学中用变形协调条件来求解 152 静力学 例 二 物体系统的平衡问题 外力 外界物体作用于系统上的力叫外力 内力 系统内部各物体之间的相互作用力叫内力 物体系统 物系 由若干个物体通过约束所组成的系统 153 静力学 物系平衡问题的特点 物体系统平衡 物系中每个单体也是平衡的 每个单体可列3个 平面任意力系 平衡方程 整个系统可列3n个方程 设物系中有n个物体 整体 解物系问题的一般方法 机构问题 个体 个体 个体 各个击破 结构问题 有固定端 无固定端 个体 个体 整体 个体 不带固定端 个体 组合体 个体 整体 带固定端 154 解题步骤 选研究对象 画受力图 受力分析 选坐标 取矩点 列平衡方程 解方程求出未知数 坐标轴最好选在与未知力垂直或平行的投影轴上 矩心最好选在未知力的交叉点上 注意判断二力杆 运用合力矩定理等 先取矩 后投影 列一个平衡方程求一个未知力 解题技巧 静力学 解题步骤与技巧 155 静力学 例1 已知 OA R AB l 当OA水平时 冲压力为P时 求 M O点的约束反力 AB杆内力 冲头给导轨的侧压力 解 以B为研究对象 156 静力学 负号表示力的方向与图中所设方向相反 再以轮O为研究对象 FB FN 157 静力学 例2 已知 M 10KNm q 2KN m 求 A C处的反力 解 以BC为研究对象 158 静力学 例2 已知 M 10kNm q 2kN m 求 A C处的反力 以AB为研究对象 159 静力学 例3 已知 M 40KNm P 100KN q 50KN m 求 A处的反力 以BC为研究对象 解 160 静力学 以整体为研究对象 161 静力学 例4 已知 P1 1000kN P2 2000kN m 1000kNm q 1000kN m 求 A B处的反力及BC杆对铰C的约束力 以整体为研究对象 解 162 静力学 例4 已知 P1 1000kN P2 2000kN m 1000kNm q 1000kN m 求 A B处的反力及BC杆对铰C的约束力 以C为研究对象 解 163 静力学 例5 已知 P 2kN B D两轮半径均为R 0 3m 求 A C处的反力 以整体为研究对象 解 164 静力学 以BC为研究对象 165 静力学 例6 已知 m 30kNm P 10kN q 5kN m 求 A C E处的反力 以DE为研究对象 解 166 静力学 以BD为研究对象 P 167 静力学 以AB为研究对象 P 168 静力学 例7 已知 m 30KNm P 10KN q 5KN m 求 A C E处的反力 以DE为研究对象 解 169 静力学 以BDE为研究对象 P 170 静力学 以整体为研究对象 171 静力学 本章结束 作业 第一次 4 1 a c e 4 5第二次 4 16 4 17 4 18 4 19选做 4 20 4 21 172 第五章空间任意力系 工程力学 173 空间任意力系 工程中常常存在着很多各力的作用线在空间内任意分布的力系 即空间力系 空间力系是最一般的力系 a 图为空间汇交力系 b 图为空间任意力系 b 图中去了风力为空间平行力系 174 第五章空间任意力系 5 1空间任意力系的简化 5 2空间任意力系的平衡方程 175 空间任意力系 空间任意力系 空间汇交力系 空间力偶系 5 1空间任意力系的简化 176 空间任意力系 F1 A1 A2 An F2 Fn M1 M2 Mn MO 空间汇交力系的合力称为力系的主矢 力系的主矢与简化中心的选择无关 投影为 177 空间任意力系 F1 A1 A2 An F2 Fn M1 M2 Mn MO 空间力偶系的合力偶称为力系的主矩 力系的主矩与简化中心的选择有关 投影为 178 空间任意力系 空间任意力系向任一点简化可得到一个力和一个力偶 这个力通过简化中心 称为力系的主矢 它等于各个力的矢量和 并与简化中心的选择无关 这个力偶的力偶矩矢称为力系对简化中心的主矩 并等于力系中各力对简化中心之矩矢的矢量和 并与简化中心的选择有关 179 5 2空间任意力系的平衡方程 空间任意力系 F1 A1 A2 An F2 Fn MO 一 空间任意力系的平衡条件 空间任意力系平衡 力系的主矢和对任一点和主矩适于零 180 空间任意力系 二 空间任意力系的平衡方程 空间任意力系的平衡方程 空间任意力系平衡的充要条件是 各力在三个坐标轴上的投影的代数和及各力对此三个轴力矩的代数和都必须分别等于零 共六个独立方程 只能求解独立的六个未知数 181

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论