




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章数值积分方法 计算 但是在许多实际问题经常遇到下列情况 1 原函数存在但不能用初等函数表示 2 原函数可以用初等函数表示 但结构复杂 3 被积函数没有表达式 仅仅是一张函数表 问题提出 解决以上情况的积分问题 最有效的办法为数值积分法 此种方法是利用被积函数在一些离散点处的函数值 而求得满足一定代数精度要求的定积分近似值 取左端点矩形近似 数值积分的思想 分割 近似 求和 取右端点矩形近似 定积分几何意义 曲边梯形的面积 数值积分公式的一般形式 其中 求积节点 求积系数 仅与求积节点有关 求积公式的截断误差或余项 5 1插值型求积公式 思想 作n次Lagrange插值多项式 设已知函数在节点上的函数值 余项 则有数值积分公式 这是用插值函数代替被积函数导出的定积分近似计算公式 称为插值型数值积分公式 n 1时的求积公式 一 梯形公式 这是用线性插值函数代替被积函数导出的定积分近似计算公式 称为梯形数值积分公式 几何意义 截断误差 已知线性插值的截断误差为 积分中值定理 连续 不变号 n 2时的求积公式 二 Simpson公式 将 a b 二等分 等分节点x0 a x1 a b 2 x2 b作为积分节点 构造二次Lagrange插值多项式L2 x 这是用二次插值函数代替被积函数导出的定积分近似计算公式 称为辛普森数值积分公式 几何意义 Simpson积分公式的截断误差 定理 积分中值定理 连续 不变号 复合求积法通常把积分区间等分成若干个子区间 在每个子区间上用低阶的求积公式 如梯形积分公式Simpson积分公式 对所有的子区间求和即得整个区间 a b 上的积分公式 这种方法称为复合求积法 5 2复合求积公式 5 2 1复化梯形积分将 a b 分成若干小区间 在每个区间 xi xi 1 上用梯形积分公式 再将这些小区间上的数值积分累加起来 就得到区间 a b 上的数值积分 这种方法称为复化梯形积分 计算公式将 a b n等分 h xi 1 xi b a n xi a ih i 0 1 2 n 记为T h 或Tn f 复化梯形公式的几何意义 小梯形面积之和近似 复化梯形公式 复化梯形公式的余项 设 由介值定理 余项估计式 计算公式将 a b 2m等分 m为积分子区间数 记n 2m n 1为节点总数 h xi 1 xi b a n xi a ih i 0 1 2 n 5 2 2复化Simpson公式 复化Simpson公式 复化Simpson公式的几何意义 小抛物面积之和近似 系数首尾为1 奇数点为4 偶数点为2 复化Simpson公式的余项 设 由介值定理 余项估计式 例 分别利用复化梯形公式 复化Simpson公式计算积分的近似值 要求按复化Simpson公式计算时误差不超过 解 首先来确定步长 复化Simpson公式的余项 本题的求法 由归纳法知 解不等式得 将区间8等分 分别采用复化Simpson 梯形公式 复化梯形公式 n 8 复化Simpson公式 n 4 代数精度的判别方法 如果求积公式对一切不高于m次的多项式都恒成立 而对于某个m 1次多项式不能精确成立 则称该求积公式具有m次代数精度 定理求积公式具有次m代数精度的充要条件是为时求积公式精确成立 而为时求积公式不能成为等式 5 3数值积分公式的代数精度和Gauss求积公式 例2见p73的例5 5 Gauss求积公式 一 Gauss积分问题的提法 前述的求积公式中求积节点是取等距节点 求积系数计算方便 但代数精度要受到限制 为了提高代数精度 需要适当选择求积节点 当求积节点个数确定后 不管这些求积节点如何选取 求积公式的代数精度最高能达到多少 具有最高代数精度的求积公式中求积节点如何选取 积分公式的一般形式 形如的插值型求积公式的代数精度最高不超过2n 1次 定理 这样由方程组的4个方程就能求出4个未知数 得 根据定理知三点插值型求积公式的代数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东瓜钓鱼测试题及答案
- 期末公差考试题及答案
- 卫生专项面试题及答案
- 电工考试题库及答案
- 冲突分析面试题及答案
- 脑脊液护理考试题及答案
- 机械量具考试题及答案
- 五级护理考试试题及答案
- 临床诊断思维考试试题及答案2025版
- 临床医学概论试题一及答案2025版
- 2025年成都水务考试题库
- 《医师法》考核试题(附答案)
- 2025年云计算测试题库及答案
- 湛江初一分班考试试题及答案
- 2025年成都东部集团有限公司及下属企业招聘考试笔试试卷【附答案】
- 广东省深圳市2025-2026学年七年级上学期入学考试模拟英语试卷(六套-6卷-原卷)
- 【炼石网络】图解交通运输部《交通运输数据安全风险评估指南》(2025)21141mb
- 消防员心理健康教育课件教学
- 企业园中园管理办法细则
- 2025年高考生物四川卷试题真题及答案详解(精校打印版)
- 电子厂生产安全培训
评论
0/150
提交评论