




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微型冷热电联供系统的人工神经网络建模及仿真微型冷热电联供系统的人工神经网络建模及仿真 摘要 本文以人工神经网络为工具 建立了燃气电机组和吸附式制冷机组成的 微型冷热电联供系统的模型 对于模型的仿真结果进行了分析 通过对模型的 分析和评价 发现人工神经网络模型能准确适应联供系统的高度非线性 仿真 结果显示了模型与系统的实际运行规律较为符合 为以后指导系统的优化运行 和控制的设计奠定了良好的基础 关键词 微型冷热电联供系统 非线性 BP 神经网络 0 0 前言前言 能源是当今社会发展所面临的一个重大问题 随着全球经济的快速发展和可持 续战略的实施 能源的利用问题也摆在了非常重要的位置 冷热电联供系统作 为一种新的能源利用方式具有无可比拟的优势 冷热电联供系统用天然气作为 一次能源 随着世界天然气产量的增加 天然气将大大改变现有的能源结构 成为能源利用新的主力 而冷热电联供系统作为一种能量梯级利用系统 利用 一次能源驱动发动机发电 利用余热利用设备对余热进行回收利用 同时提供 电力 热量和冷量 这样能大大提高能源的利用效率 1 基于以上优点 冷热 电联供系统成为各国竞相研究的对象 并且在美国 日本和欧洲各国都有大规 模的实际应用 冷热电联供系统的一个重要的研究方向是整个系统的建模 好 的系统模型可以用来确定系统的可行性和分析预测系统的运行 以及用于系统 的控制策略研究 并可以为系统的优化匹配和优化运行提供指导 以往的关于联 供系统的数学模型都是基于热力学基本原理 建立简单的数学模型 而联供系 统的特性是高度非线性化的 传统的热力学模型无法准确描述其运行特性 因 此需要用另外的一种思路去建立模型 而人工神经网络则从一定程度上满足了 这一需要 人工神经网络吸取了生物神经网络的许多优点 表现在 1 高度的并行性 2 高度的非线性全局作用 3 良好的容错性与联想记忆功能 4 十分强的自适应 自学习能力 2 近年来 人工神经网络已经在制冷空调方面有了一些应用 5 7 1 1 微型冷热电联供系统实验装置设计微型冷热电联供系统实验装置设计 1 11 1 系统描述系统描述 上海交通大学制冷与低温工程研究所孔祥强 1 等建立了制冷功率在 10 kW 左右 的微型冷热电联供系统试验台 整个系统采用了一台小型燃气发电机组和一台 研究所自己研制的余热型吸附式制冷机 其系统图见图 1 系统设计参数见表 1 图 1 微型冷热电联供系统流程图 1 21 2 实验参数仪器实验参数仪器 系统的测试参数包括 1 热水循环 冷却塔冷却水循环 冷冻水循环的状态参数 主要有温度和流 量 2 液化气供应的状态参数 主要有压力 温度和流量 3 空气供应的状态参数 主要是温度和流量 4 小型燃气内燃机排烟的状态参数 5 系统发电的状态参数 主要是功率 电压 电流和频率 上述待测参数的采集及处理全部由计算机采集系统自动完成 整个数据采集系 统由 27 个温度传感器 2 个压力传感器 7 个流量传感器 1 台电参数测量仪 1 台 Keithely2700 数据采集 测量仪和 1 台计算机组成 表 1 微型冷热电联供系统设计参数 微型冷热电联供系统 输出电能峰值 12kW 400V 230V 50Hz 输出热能峰值 25kW 50 热水 发电峰值效率 20 系统总能效率 70 小型燃气内燃机发电机组 最大输出电功率 20 裸机噪音 95dBA 1m 箱装体外噪音 9kW 制冷峰值制冷 COP 0 3 2 2 人工神经网络建模人工神经网络建模 人工神经网络 Artificial Neural Network 简称 ANN 是人类在对其大脑神 经网络认识理解的基础上人工构造的能够实现某种功能的神经网络 它是理论 化的人脑神经网络的数学模型 是基于模仿大脑神经网络结构和功能而建立的 一种信息处理系统 2 它实际上是由大量简单元件相互连接而成的复杂网络 具有高度的非线性 能够进行复杂的逻辑操作和非线性关系实现的系统 目前 在人工神经网络的实际应用中 绝大部分的神经网络模型是采用 BP Back Propagation 网络和它的变化形式 它是前向网络的核心部分 并体现了人工 神经网络最精华的部分 BP 神经网络特别适用于函数逼近 因此本文采用 BP 神经网络建立模型 4 2 12 1 BPBP 神经网络的原理神经网络的原理 BP 网络结构是一种单向传播的多层前向网络 这种网络除输入输出节点外 还 有一层或多层的隐节点 同层节点中没有任何耦合 输入信号从输入层节点依 次传过各隐层节点 然后传到输出节点 每一层节点的输出只影响下一层节点 的输出 如果输出层不能得到期望输出 即实际输出值与期望输出值之间有误 差 则转入反向传播过程 将误差信号沿原来的连接通路返回 通过修改各层 神经元的权值 逐次向输入层进行计算 再经过正向传播过程 反复进行 使 得误差信号最小 2 22 2 BPBP 神经网络的计算公式神经网络的计算公式 3 3 本文取三层 BP 网络 其输入节点为 隐节点为 输出节点为 阈值为 输入节点与隐节点间的网络权值为 隐节点与输出节点的网络权值 输出节点的期望输出为 隐节点的输出 1 其中 输出节点的计算输出 2 其中 输出节点的误差公式 3 2 32 3 系统模型的建立系统模型的建立 挑出部分实验数据作为下一步的测试之用 剩余的数据利用 Matlab6 5 人工神 经网络工具箱建立燃气发电机组神经网络模型 Gas Engine ANN Model 见 图 2 和吸附式制冷机神经网络模型 Adsorption Chiller ANN Model 见图 3 图 2 燃气发电机组神经网络结构图 图 3 吸附式制冷机神经网络结构图 实际的燃气发电机组的影响因素很多 但本文对其做了简化处理 其输入参数 为燃气的消耗量换算成的输入能量 输出参数为发电量和余热回收量 这样能 大大减少模型的复杂程度 便于用神经网络进行训练 而其误差却能控制在可 接受的范围内 吸附式制冷机的输入参数为部分回收余热量 输出参数为产冷 量 需要指出的是 吸附式制冷机的影响参数也非常多 包括加热时间 回质 时间 加热量等都会改变系统的性能 上海交大制冷与低温研究所王如竹梯队 对吸附式制冷做了大量的研究 因此有可靠的数据支持 6 故作者在建立吸附 式制冷机神经网络模型时尝试把这些影响因素都考虑进去 建立了多输入参数 的神经网络模型 燃气发电机组神经网络模型的仿真见图 4 吸附式制冷机人工神经网络模型的 仿真见图 5 整个系统模型冷热电的输出仿真见图 6 图 4 燃气发电机组发电量和回收余热量随输入能量的变化图 图 5 吸附式制冷机产冷量随输入热量的变化图 图 6 微型冷热电联供系统神经网络模型的系统输出仿真图 由图 4 所示 燃气发电机组的发电量和回收的余热量随着输入能量的增大而增 大 在输入能量在达到 30 kW 以后 发电量和余热量随着输入能量近似接近线 形变化 由图 5 所示 在其它参数固定时 吸附式制冷机的产冷量随输入热量的增加而 接近线性增大 也就是说制冷机的 COP 值此时变化不大 图 6 是神经网络模型对系统冷热电同时输出的仿真 从图中可以看出 在发电 量一定时 也就是系统输入能量一定时 随着制冷量的增加 系统输出的热量 增加 这是由于发电量对应了一定的总的余热回收量 制冷量的增加使得用于 吸附机的热量增大 因而使得剩余的输出热量减少 在制冷量一定时 随着发 电量的增加 系统的输入能量随之增加 从而使得总的余热回收量增加 制冷 量不变对应的吸附机输入热量不变 使得剩余的输出热量增加 上述的仿真结 果是与实际的系统规律相符合的 3 3 人工神经网络模型 人工神经网络模型 ANNANN ModelModel 的评价 的评价 为了对建立的人工神经网络模型进行评价 本文采用了两种验证方法 一是模 型与所利用的实验数据进行误差计算 二是用另外的几组新的数据对模型进行 测试 其误差曲线见图 7 图 8 其测试图见图 9 图 10 如图 7 所示 燃气发电机组模型的发电量绝对误差非常小 且波动也较小 说 明模型和实验数据拟合的比较好 而余热量在输入热量较大时误差突然变大 这是由于神经网络在训练时候的随机性决定的 但其绝对误差控制在 0 06 范围 内 相对误差也非常小 在图 9 中可以看出模型对于测试点的预测效果非常好 如图 8 所示 吸附式制冷机模型的绝对误差在 0 03 范围内波动 由图 10 可见 测试点基本上在模型曲线上下波动 在多输入参数的情况下 说明模型具有一 定的适用性 图 7 燃气发电机组神经网络模型的误差曲线图 图 8 吸附式制冷机神经网络模型的误差曲线图 图 9 燃气发电机组神经网络模型的测试图 图 10 吸附式制冷机神经网络模型的测试图 4 4 结论结论 针对微型冷热电联供系统的高度非线性 多输入多输出的特点 本文提出了以 BP 神经网络进行建模的思想 系统模拟和评价的结果表明 神经网络作为一种 非线性的数学工具 具有快速 简单 准确的特点 结合 Matlab 的神经网络工 具箱使得算法的精度和模型的适用性大大增强 这为以后预测系统的运行 系 统的控制设计都提供了良好的基础 在建模过程中对系统做了必要的简化处理 随着实验和理论研究的进一步深入 以后的工作要研究多个参数对系统的运行 的影响 为系统的优化运行提出必要的方案 参考文献参考文献 1 孔祥强 基于燃气内燃机和吸附制冷机的微型冷热电联供系统研究 博士学 位论文 上海 上海交通大学 2005 2 丛爽 面向 MATLAB 工具箱的神经网络理论与应用 第 2 版 合肥 中国 科技大学出版社 2003 5 3 闻新 周露等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 提高围手术期护理质量
- 《联想与想象》课件
- 肝性脑病护理指导
- 集体土地搬迁补偿合同8篇
- 生产品质部年终总结
- 液压机理论讲解
- 《祝福》公开课课件
- 三方购房协议书7篇
- 广东省梅州市兴宁市2023-2024学年高一上学期第二次月考化学试题及答案
- 酒店会员卡制度培训大纲
- 2.2社会主义制度在中国的确立 高中政治必修一人教统编版教学课件
- 光伏施工安全管理方案
- 《金工实训(铣工) 》课件-项目1 数控铣床VDL-600A介绍
- 基于SERVQUAL模型的南京老门东历史文化街区旅游服务质量评价及提升策略研究
- 老年认知功能障碍的智能康复训练系统-洞察阐释
- 2025年四川宜宾纸业股份有限公司招聘笔试参考题库含答案解析
- 两外安全管理制度
- 深空引力波导航-洞察及研究
- 临时外架防护方案(3篇)
- 2025年时事政治考试100题(含参考答案)
- 2025年科技馆市场分析报告
评论
0/150
提交评论