




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 位值平均数计算公式位值平均数计算公式 1 众数 众数 是一组数据中出现次数最多的变量值 组距式分组下限公式 00 21 1 0mm dLM 代表众数组下限 代表众数组频数 众数组前一组频 0 m L 11 00 mm ff 数 代表组距 代表众数组频数 众数组后一组频 0 m d 12 00 mm ff 数 2 中位数 中位数 是一组数据按顺序排序后 处于中间位置上的变量值 中位数位置 分组向上累计公式 2 1 n e e e e m m m me d f S f LM 1 2 代表中位数组下限 代表中位数所在组之前各组的累计频数 e m L 1 e m S 代表中位数组频数 代表组距 e m f e m d 3 四分位数 四分位数 也称四分位点 它是通过三个点将全部数据等分为四部分 其中每部分包含 25 处在 25 和 75 分位点上的数值就是四分位数 其公式为 中位数 4 1 1 n Q 2 1 2 n Q 4 1 3 3 n Q 实例 数据总量 7 15 36 39 40 41 一共 6 项 Q1 的位置 6 1 4 1 75 Q2 的位置 6 1 2 3 5 Q3 的位置 3 6 1 4 5 25 Q1 7 15 7 1 75 1 13 Q2 36 39 36 3 5 3 37 5 Q3 40 41 40 5 25 5 40 25 数值平均数计算公式数值平均数计算公式 2 1 简单算术平均数 简单算术平均数 是将总体单位的某一数量标志值之和除以总体单位 其公式为 n x n xxx X n 21 2 加权算术平均数 加权算术平均数 受各组组中值及各组变量值出现的频数 即权数 f 大小的影响 其公式为 f xf fff fxfxfx X i ii 21 2211 3 加权算术平均数的频率 加权算术平均数的频率 其公式为 f f X f f X f f X f f XX n 2 2 1 1 4 调和平均数 调和平均数 由于只掌握每组某个标志的数值总和 M 而缺少总体单位数 f 的资料 不能直接采用加权算术平均数法计算平均数 则应采用加权调和平均数 其公式为 x m m H 5 简单几何平均数 简单几何平均数 就是 n 个变量值 Xn 连乘积的 n 次方根 其公式为 n n n XXXXXG 321 6 加权几何平均数 加权几何平均数 如果变量值较多 其出现的次数不同 则应采用加权几何平均数 其公式为 f ffff f n ff XXXXG nn 2121 21 标志变异绝对指标及成数计算公式标志变异绝对指标及成数计算公式 一 标志变异绝对指标 一 标志变异绝对指标 1 异众比率异众比率 又称离异比率或变差比 它是指非众数组的频数占总频数的比率 公式即 i m i mi r f f f ff V 1 2 极差极差 也称全距 它是一组数据的最大值与最小值这差 公式即 minmax XXR 3 平均差平均差 总体各单位标志值对算数平均数的绝对离差的算术平均数 平均差是反映各标 志值对平均数的平均距离 平均差越大 说明总体各标志值越分散 平均差越小 说明各标志值越集中 公式即为 未分组情况 分组情况 n xx DA 3 f fxx DA 4 方差和标准差 方差和标准差 方差 方差 是各变量值与其均值离差平方的平均数 公式即为 未分组情况 分组情况 n xx 2 2 f fxx 2 2 标准差标准差 方差的平方根 公式即为 未分组情况 分组情况 n xx 2 f fxx 2 方差的数学性质 变量的方差等于变量平方的平均数减去变量平均数的平方 方差的简便算法 方差 平方的平均数 平均数的平方 平方的平均数表示为 平均数的平方表示为 n x 2 2 n x 方差简便算法的公式即为 222 xx 二 是非标志的平均数 方差 标准差 二 是非标志的平均数 方差 标准差 是非标志 将总体分成具有某种性质和不具有某种性质的两部分 我们所关心的标志表 现称为 是 另一标志标现称为 非 例如 产品分为合格与不合格品 成数 总体中 是非标志只有两种表现 我们把具有某种表现和不具有某种表现的单位 占全部总体单位的比重称为成数 具有某种性质的成数用 p 表示 不具有某 种性质的用 q 表示 p q 1 成数的平均数 均值 就是成数本身成数的平均数 均值 就是成数本身 成数方差 成数标准差 1 2 pp pp 1 抽样平均误差 极限误差计算公式抽样平均误差 极限误差计算公式 1 抽样平均误差 抽样平均误差 反映所有的样本平均数与总体平均数的平均误差 用表示 x 平均数公式 平均数公式 重置抽样公式为 nM x x 2 其中表示总体标准差 表示样本容量 M 为样本个数 n 不重抽样公式为 其中 N 为总体单位数 1 2 N nN nM x x 成数公式 成数公式 4 重置抽样公式为 n PP P 1 不重置抽样公式为 1 1 N nN n PP P 2 极限误差 极限误差 样本统计量与被估计的总体参数的离差的绝对值所容许的最大值 又称边际 误差 用来表示 x Xx p Pp 用文字表述为 概度率 抽样极限误差 抽样平均误差 x z 概率保证程度用表示 又叫置信度或置信水平 它是的函数 zFz 3 计算题步骤 计算题步骤 第一套 求 zF 1 抽样 计算 区间估计 x x xS 2 根据 查表 zFz 3 计算 写出 x z x x x 4 成数计算步骤 成数计算步骤 第一套 求 zF 1 抽样 计算 区间估计 P p xS 2 根据 查表 zFz 3 计算 写出 pp z Pp P P 时间序列的分析指标时间序列的分析指标 1 绝对数时间序列的计算 绝对数时间序列的计算 用算术平均数计算 时期序列的序时平均数 nyyyyy n 21 时点序列的序时平均数 连续时点 连续每天资料不同 nyy 持续天内资料不变 tyty 间断时点 间隔时间相等序时平均数的计算 首末折半 第二套 求 zF 1 抽样 计算 区间估计 x x xS 2 根据 查表 x z zF 3 由和 写出x x x 第二套 求 zF 1 抽样 计算 区间估计 P p xS 2 根据 查表 P P z zF 3 由 P 和 写出 p Pp P P 5 1 2 1 2 1 121 n yyyy y nn 间断时点 间隔不相等序时平均数的计算 t t yy t yy t yy y n nn 1 1 2 32 1 21 2 2 2 2 绝对数或平均数时间序列的序时平均数 应先分别求出构成相对数或平均数的分子和分 母的平均数 而后再进行对比 先平均 再对比 bay 3 增长量 增长量 报告期水平 基期水平 逐期增长量 逐期增长量 是报告期水平与前一期水平之差 表示本期比前一期增长的绝对数量 累积增长量 累积增长量 是报告期水平与某一固定时期水平之差 说明报告期与某一固定期增长的绝 逐期增长量与累积增长量之间存在一定的关系 逐期增长量与累积增长量之间存在一定的关系 各逐期增长量的和等于相应时期的累积增长 量 两相邻时期累积增长量之差等相应时期的逐期增长量 4 平均增长量 平均增长量 n yy n yy y nii01 n 为逐期增长量个数 它是观察数量的个数减 1 平均增长量 逐期增长量之和 逐期增长量个数 累积增长量 观察期数 5 发展速度 发展速度 发展速度 报告期水平 基期水平 环比发展速度 环比发展速度 是报告期发展水平与前一水平之比 说明现象逐期发展变化的程度 定基发展速度 定基发展速度 是报告期发展水平与某一固定时期水平之比 说明现象整个观察期内总的发 展变化程度 以上两种发展速度之间存在着一定的数量 以上两种发展速度之间存在着一定的数量 各个环比发展速度的连乘积等于最末期的定基发 展速度 两个相邻的定基发展速度之比等于相应的各期环比发展速度 6 增长速度 增长速度 增长速度 增长量 基期水平 报告期水平 基期水平 基期水平 发展速度 1 环比增长速度 环比增长速度 i 1 2 n 1 111 iiiiii yyyyyG 定基增长速度 定基增长速度 i 1 2 n 1 000 yyyyyG iii 环比增长速度与定基增长速度之间没有直接关系环比增长速度与定基增长速度之间没有直接关系 若由环比增长速度推算定基增长速度 可 先将各环比增长速度加 1 后连乘 再将结果减 1 即得定期增长速度 7 平均发展速度 平均发展速度 用水平法 几何平均法 计算 公式为 i 1 2 n n n n i i n n n y y y y y y y y y y R 0111 2 0 1 8 平均增长速度 平均增长速度 又称增长率 是用于描述现象在整个观察期内平均增长变化程度的指标 6 通常用平均发展速度减 1 来求得 1 RG 9 长期趋势分析 移动平均法 移动平均法 通过扩大时间序列的时间间隔 并按一定的间隔长期逐期 移动 分别计算出一系列平均数 由这些平均数形成的新的时间序列对原时间序列的波 动起到一定人修匀作用 削弱了原序列中短期偶然因素的影响 从而呈现出现象发展的 基本变动趋势 公式为 式中 K 为间隔长度 是大于 1 小于 n 的正整数 Kyyyy iKi 111 最小平方法 最小平方法 又称最小二乘法 直线趋势模型 当时间序列的逐期长增长量大致相同 或利用散点图观察现象的变动近 似一条直线时 可采用下列线性模来描述 btayt 根据最小平方法的基本要求 可得 22 ttn yttyn b 综合指数 平均指数综合指数 平均指数 1 加权综合指数 加权综合指数 拉氏 销售指数 数量指数 拉氏 销售指数 数量指数 基期变量值加权 基期变量值加权 00 10 0 1 qp qp q 帕氏 价格指数 质量指数 帕氏 价格指数 质量指数 报告期变量值加权 报告期变量值加权 10 11 0 1 qp qp p 公式中表示数量指数 和表示一组项目基期和报告期的物量数值 0 1 q 0 q 1 q 表示质量指数 和表示一组项目的基期和报告期的质量数值 0 1 p 0 p 1 p 2 股票价格指数 股票价格指数 即以报告期发行量为权数 同度量因素 进行加权综合 公式为 10 11 0 1 qp qp p 3 加权平均指数 加权平均指数 数量指标平均指数编制的一般原则是 以基期价值量指标为权数 计算数量指标个体指数的数量指标平均指数编制的一般原则是 以基期价值量指标为权数 计算数量指标个体指数的 加权算术平均数加权算术平均数 加权算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB14-T 1586-2025 SH系矮化中间砧苹果园滴灌技术规程
- 矿石石头装车合同安全运输与责任保险协议
- 土地抵押贷款及财产分配协议
- 创新型个人创业项目投资借款合同
- 供应链金融财务顾问与风险管理协议
- 2025年心理测量与评估考试题及答案
- 标样本桥梁技术范本
- 健康餐厅委托经营及菜品创新合作协议范本
- 拆迁工程临时用电设施拆除与施工合同
- 义工活动活动方案
- 法兰标准尺寸表
- 华为认证HCIP安全V4.0-H12-725考试复习题库大全-上(单选、多选题)
- 华为认证HCIP安全V4.0-H12-725考试复习题库大全-下(判断、填空、简答题)
- 小学劳动教育教研活动记录(共7次)
- 农产品供应链数字化转型:理论框架与实现路径共3篇
- 加油站消防灭火实战演练应急预案演练记录表
- GB/T 21490-2008结构加固修复用碳纤维片材
- GB/T 18765-2008野山参鉴定及分等质量
- 巴西榥榥木的药理功效研究文献综述,开题报告
- 沟通中的倾听
- 高考作文与阅读:故乡的沉沦(附精彩点评与文章珠玑)
评论
0/150
提交评论