




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 勾股定理 学习要求学习要求 1 掌握勾股定理的内容及证明方法 能够熟练地运用勾股定理由已知直角三角形中的两条边长求出 第三条边长 2 掌握勾股定理 能够运用勾股定理解决简单的实际问题 会运用方程思想解决问题 3 熟练应用勾股定理解决直角三角形中的问题 进一步运用方程思想解决问题 4 掌握勾股定理的逆定理及其应用 理解原命题与其逆命题 原定理与其逆定理的概念及它们之间的关系 知识精讲 1 勾股定理的内容 如果直角三角形的两直角边分别是 斜边为 那么 即直角三角形中两直角边的平方 abc 222 abc 和等于斜边的平方 注 勾 最短的边 股 较长的直角边 弦 斜边 C A B 图 2 c b a 2 勾股定理的证明 1 方法一 将四个全等的直角三角形拼成如图所示的正方形 D CB A 2 2 222 1 4 2 ABCD Sabcab abc 正方形 2 方法二 将四个全等的直角三角形拼成如图所示的正方形 G F E H 2 2 222 1 4 2 Scabab abc 正方形EFG H 3 方法三 总统 法 如图所示将两个直角三角形拼成直角梯形 2 11 2 222 ABCD ab ab Sabc 梯形 222 abc 2 c b a c b a E D C BA 3 勾股定理的逆定理 如果三角形中两边的平方和等于第三边的平方 那么这个三角形是直角三角形 即 222 ABCACBCABABC 在中如果那么是直角三角形 4 勾股数 满足的三个正整数 称为勾股数 勾股数扩大相同倍数后 仍为勾股数 常用勾股数 222 abc 3 4 5 5 12 13 7 24 25 8 15 17 课堂练习 一 勾股定理一 勾股定理 1 如果直角三角形的两直角边长分别为 a b 斜边长为 c 那么 c2 这一定理在我国被称为 2 ABC 中 C 90 a b c 分别是 A B C 的对边 1 若 a 5 b 12 则 c 2 若 c 41 a 40 则 b 3 若 A 30 a 1 则 c b 4 若 A 45 a 1 则 b c 3 如图是由边长为 1m 的正方形地砖铺设的地面示意图 小明沿图中所示的折线从 A B C 所走的路程为 4 等腰直角三角形的斜边为 10 则腰长为 斜边上的高为 5 在直角三角形中 一条直角边为 11cm 另两边是两个连续自然数 则此直角三角形的周长为 6 Rt ABC 中 斜边 BC 2 则 AB2 AC2 BC2的值为 A 8 B 4 C 6 D 无法计算 7 如图 ABC 中 AB AC 10 BD 是 AC 边上的高线 DC 2 则 BD 等于 A 4 B 6 C 8 D 102 3 8 如图 Rt ABC 中 C 90 若 AB 15cm 则正方形 ADEC 和正方形 BCFG 的面积和为 A 150cm2 B 200cm2 C 225cm2 D 无法计算 9 在 Rt ABC 中 C 90 A B C 的对边分别为 a b c 1 若 a b 3 4 c 75cm 求 a b 2 若 a c 15 17 b 24 求 ABC 的面积 3 若 c a 4 b 16 求 a c 4 若 A 30 c 24 求 c 边上的高 hc 5 若 a b c 为连续整数 求 a b c 10 若直角三角形的三边长分别为 2 4 x 则 x 的值可能有 A 1 个 B 2 个 C 3 个 D 4 个 13 如图 Rt ABC 中 C 90 A 30 BD 是 ABC 的平分线 AD 20 求 BC 的长 二 勾股定理的实际应用二 勾股定理的实际应用 1 若一个直角三角形的两边长分别为 12 和 5 则此三角形的第三边长为 4 2 甲 乙两人同时从同一地点出发 已知甲往东走了 4km 乙往南走了 3km 此时甲 乙两人相距 km 3 如图 有一块长方形花圃 有少数人为了避开拐角走 捷径 在花圃内走出了一条 路 他们仅仅少走了 m 路 却踩伤了花草 3 题图 4 如图 有两棵树 一棵高 8m 另一棵高 2m 两树相距 8m 一只小鸟从一棵树的树梢飞到另一棵树的树梢 至少要飞 m 4 题图 5 如图 一棵大树被台风刮断 若树在离地面 3m 处折断 树顶端落在离树底部 4m 处 则树折断之前高 5 题图 A 5m B 7m C 8m D 10m 6 如图 从台阶的下端点 B 到上端点 A 的直线距离为 6 题图 A B 212310 C D 5658 7 在平静的湖面上 有一支红莲 高出水面 1 米 一阵风吹来 红莲移到一边 花朵齐及水面 已知红莲移动的 水平距离为 2 米 求这里的水深是多少米 5 8 如图 一电线杆 AB 的高为 10 米 当太阳光线与地面的夹角为 60 时 其影长 AC 为 米 9 如图 在高为 3 米 斜坡长为 5 米的楼梯表面铺地毯 则地毯的长度至少需要多少米 若楼梯宽 2 米 地毯每 平方米 30 元 那么这块地毯需花多少元 三 勾股定理与直角三角形三 勾股定理与直角三角形 1 在 ABC 中 若 A B 90 AC 5 BC 3 则 AB AB 边上的高 CE 2 在 ABC 中 若 AB AC 20 BC 24 则 BC 边上的高 AD AC 边上的高 BE 3 在 ABC 中 若 AC BC ACB 90 AB 10 则 AC AB 边上的高 CD 4 在 ABC 中 若 AB BC CA a 则 ABC 的面积为 5 在 ABC 中 若 ACB 120 AC BC AB 边上的高 CD 3 则 AC AB BC 边上的高 AE 6 已知直角三角形的周长为 斜边为 2 则该三角形的面积是 62 A B C D 1 4 1 4 3 2 1 7 若等腰三角形两边长分别为 4 和 6 则底边上的高等于 A B 或 C D 或774124247 8 如图 在 Rt ABC 中 C 90 D E 分别为 BC 和 AC 的中点 AD 5 BE 求 AB 的长 102 9 在数轴上画出表示及的点 10 13 6 课后练习 一 填空题一 填空题 1 若一个三角形的三边长分别为 6 8 10 则这个三角形中最短边上的高为 2 若等边三角形的边长为 2 则它的面积为 3 如图所示的图形中 所有的四边形都是正方形 所有的三角形都是直角三角形 若涂黑的四个小正方形的面积 的和是 10cm2 则其中最大的正方形的边长为 cm 3 题图 4 如图 B C 是河岸边两点 A 是对岸岸边一点 测得 ABC 45 ACB 45 BC 60 米 则点 A 到岸 边 BC 的距离是 米 4 题图 5 已知 如图 ABC 中 C 90 点 O 为 ABC 的三条角平分线的交点 OD BC OE AC OF AB 点 D E F 分别是垂足 且 BC 8cm CA 6cm 则点 O 到三边 AB AC 和 BC 的距离分别等于 cm 5 题图 6 如图所示 有一块直角三角形纸片 两直角边 AB 6 BC 8 将直角边 AB 折叠使它落在斜边 AC 上 折痕为 AD 则 BD 6 题图 7 ABC 中 AB AC 13 若 AB 边上的高 CD 5 则 BC 7 8 如图 AB 5 AC 3 BC 边上的中线 AD 2 则 ABC 的面积为 8 题图 二 选择题二 选择题 9 下列三角形中 是直角三角形的是 A 三角形的三边满足关系 a b c B 三角形的三边比为 1 2 3 C 三角形的一边等于另一边的一半 D 三角形的三边为 9 40 41 10 某市在旧城改造中 计划在市内一块如图所示的三角形空地上种植草皮以美化环境 已知这种草皮每平方米 售价 a 元 则购买这种草皮至少需要 10 题图 A 450a 元 B 225a 元 C 150a 元 D 300a 元 11 如图 四边形 ABCD 中 AB BC ABC CDA 90 BE AD 于点 E 且四边形 ABCD 的面积为 8 则 BE A 2 B 3 C D 2232 12 如图 Rt ABC 中 C 90 CD AB 于点 D AB 13 CD 6 则 AC BC 等于 A 5 B 135 C D 131359 8 13 下列判断错误的是 A 如果 a b b c 那么 a c B 如果 a b b c 那么 a c C 如果 a b b c 那么 a c D 如果 a b b c 那么 a c 14 下列命题中是真命题的是 1 所有的等腰三角形都全等 2 有一个锐角相等的两个直角三角形全等 3 到线段两端点距离相等的点在这条线段的垂直平分线上 4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年燃烧单词考研真题及答案
- 2025年智能家居互联互通标准与产业布局优化策略报告
- 新能源行业2025年储能技术协同创新趋势报告
- 激光医学测试题目及答案
- 小学音乐会考试题及答案
- 法警专业能力测试题及答案
- 高中物理光的颜色 色散教学设计
- 新能源产品创新2025:市场需求变化与调整策略分析报告
- 甘肃省武威市第十七中学七年级地理上册 2.1 大洲和大洋说课稿2 新人教版
- 2025年初二上册英语试卷及答案
- 要素式强制执行申请书(申请执行用)
- 《净、静、敬、竞》的主题班会
- GB/T 18690.1-2009农业灌溉设备微灌用过滤器第1部分:术语、定义和分类
- FCI测试试题附答案
- 部编版四年级上册语文全册1-8单元课文思维导图
- 耳部解剖及急慢性中耳炎课件
- 【成都】麓湖生态城地产视角分析总结
- 盘扣支模架工程监理细则
- 军事训练教学法模板课件
- The Wind and the Sun风和太阳的故事英语伊索寓言
- 物流设施与设备ppt课件(完整版)
评论
0/150
提交评论