




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 5 2留数和留数定理 一 留数的定义和计算二 留数定理三 函数在无穷远点的留数 2 的某去心邻域 一 留数的定义和计算 3 0 高阶导数公式 0 柯西积分定理 4 1 定义 记作 任意一条简单闭曲线C的积分 的值 Residue 则沿 内 除 称为 5 2 计算留数的一般公式 由Laurent级数展开定理 定义留数的积分值是f z 在环域内Laurent级数的负一次幂系数c 1 1 若z0为函数f z 的可去奇点 负幂项的项数为零个 则它在点z0的留数为零 注 当z0为f z g z z0 的孤立奇点时 若为偶函数 则f z 在点z0的去心邻域内Laurent级数只含z z0的偶次幂 其奇次幂系数都为0 得 6 如果为的一级极点 那么 规则1 成Laurent级数求 7 规则2若z0为f z 的m级极点 则对任意整数有 说明将函数的零阶导数看作它本身 规则1可看作规则2当n m 1时的特殊情形 且规则2可取m 1 8 规则3 如果 的一级极点 且有 9 为的一级极点 证 10 3 典型例题 解 11 分析 由规则2得 计算较麻烦 12 解 13 注意 如为m级极点 当m较大而导数又难以计算时 2 在应用规则2时 取得比实际的级数高 级数高反而使计算方便 1 在实际计算中应灵活运用计算规则 为了计算方便一般不要将m 但有时把m取得比实际的 如上例取 14 例3 求下列函数在指定点处的留数 1 解 是函数的一级零点 又是函数的五级零点 于是它是的四级极点 可用规则计算其留数 其中 为了计算简便应当取其中 这时有 15 另解 在点的去心邻域内的Laurent级数为 其中的项的系数为 从而也有 例3 求下列函数在指定点处的留数 1 16 2 解 在点的去心邻域内的Laurent级数为 显然为它的本性奇点 其中的项的系数为 于是得 17 3 解 显然是的一级极点 可是不能用规则求其留数 由规则得 18 思考 有关因式分解问题 1 2 19 二 留数定理 定理1若函数f z 在正向简单闭曲线C上处处解析 在C的内部除有限个孤立奇点z1 z2 zn外解析 则有 留数概念的重要性在于下面的留数定理 它使得一些积分的计算变得十分容易 20 例4 计算下列积分 1 解 被积函数的奇点和都在圆的内部 由规则1 2可得以下结果 于是由留数定理得积分值为 21 2 解 在圆的内部有一个二级极点和两个一级极点 于是利用留数的计算规则和得 22 2 最后由留数定理得积分值为 23 解 由规则3 24 例6计算积分 C为正向圆周 解 除 被积函数 点外 无其他奇点 在圆外 所以 25 因此 26 1若z0为函数f z 的可去奇点 负幂项的项数为零个 则它在点z0的留数为零 2当z0为f z g z z0 的孤立奇点时 若为偶函数 则f z 在点z0的留数为零 小结 留数的计算 3若z0为f z 的一级极点 则有 4若z0为f z 的m级极点 则对任意整数有 27 5设f z P z Q z 其中P z 和Q z 在点z0都解析 若 Q z0 0且 则z0为f z 的一级极点 且有 6由Laurent级数展开定理 留数等于f z 在环域内Laurent级数的负一次幂系数c 1 28 第五章作业 P1831 1 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁无人机巡检服务2025年商业模式创新报告
- 2026届江苏省泰州市部分地区物理八上期末统考模拟试题含解析
- 贵州省黔三州2026届八年级物理第一学期期末经典试题含解析
- 2026届黑龙江省齐齐哈尔市实验学校物理八上期末学业水平测试试题含解析
- 期刊合作合同
- 防水施工承包合同3篇
- 老年之家日常管理办法
- 职工之家考核管理办法
- 职工因私出境管理办法
- 职工澡堂安全管理办法
- 2025-2026学年地质版(2024)小学体育与健康二年级全一册《别让眼睛受伤害》教学设计
- 车辆安全培训课件
- 2025年商标审查协作中心面试模拟题答案
- esg考试试卷问题及答案
- 2025年徐州市中考数学试题卷(含答案及解析)
- 统编版五升六语文开学摸底测试卷(十二)(含答案)
- 2025-2026学年北师大版(2024)初中物理八年级上册教学计划及进度表
- 2025年度哈尔滨“丁香人才周”(春季)哈尔滨新区教育系统专项招聘80人考试备考试题及答案解析
- 军用电台知识培训方案课件
- 外科面试题目及答案
- 2025年职业技能鉴定考试(婴幼儿发展引导员·高级/三级)历年参考题库含答案详解(5套)
评论
0/150
提交评论