高中数学:第三章《数系的扩充与复数的引入 复数》学案(新人教A版选修1-2)_第1页
高中数学:第三章《数系的扩充与复数的引入 复数》学案(新人教A版选修1-2)_第2页
高中数学:第三章《数系的扩充与复数的引入 复数》学案(新人教A版选修1-2)_第3页
高中数学:第三章《数系的扩充与复数的引入 复数》学案(新人教A版选修1-2)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用心 爱心 专心 复数复习学案复数复习学案 一 知识结构 二 重点 难点 热点剖析 由于复数在整个高中数学所处的地位的改变 今后高考时复数不会有太多太高的要求 试题数量稳定在一道试题 难度不会太大 复数的概念及复数的运算是复数应用的基础 是高考考查的重点 复数的运算是复数的中心内容 是高考命题的热点 而复数的乘 除 更是考查的重点 主要考查基本运算能力 另外复数的有关概念众多 涉及知识面广 易 与三角 几何 向量知识 不等式等结合起来考查 三 技巧方法 1 设 z a bi a bR 利用复数相等转化为实数问题是解决复数问题常用的方法 同时 要学会以整体的角度出发去分析和求解 如果遇到复数就设 z a bi a bR 有时带 来不必要的运算上的困难 若能把握住复数的整体性质 充分运用整体思想求解 则 能事半功倍 2 在简化运算中 如能合理运用 i 和复数的模等有关的性质 常能出奇制胜 事半功倍 所以在学习中注意积累并灵活运用 3 性质 22 zzzz 是复数运算与实数运算相互转化的重要依据 也是把复数看作 整体进行运算的主要依据 在解题中加以认识并逐渐领会 4 学习本章时 应注意联系全面学过的实数的性质 实数的运算内容 以便对复数的知 识有较完整的认识 四 注意点析 1 要注意实数 虚数 纯虚数 复数之间的联系与区别 实数集和虚数集都是复数集的 真子集 它们的并集是复数集 它们的交集是空集 纯虚数集是虚数集的真子集 2 当概念扩展到复数后 实数集 R 中的一些运算性质 概念 关系就不一定适用了 如 不等式的性质 绝对值的定义 偶次方非负等 3 熟练掌握复数乘法 除法的运算法则 特别是除法法则 更为重要 是考试的重点 五 思想方法 1 数形结合这是本章的主要数学思想 例如复数本身的几何意义及四则运算的几何意义 等 图形要画得合乎题意 充分利用图形的直观性 简捷巧妙的解题 2 方程的思想 主要体现在复数相等的充要条件和复数方程 3 转化思想 转化思想是复数的重要思想方法 既然在实数的基础上扩展到复数 自然复 数中的许多问题都可以转化到实数集内解决 如求模运算 复数相等的充要条件及 22 zzzz 等 进行复数与实数间的转化 4 分类讨论思想 它是一种比较重要的解题策略和方法 在复数中它能够使复杂问题简单 数系扩充 复数 复数的概念 复数的运算 定义 代数形式 四则运算 几何意义 用心 爱心 专心 化 从而化整为零 各个击破 5 主要方法有 待定系数法 整体法 待定系数法是利用复数的代数形式 设复数 z a bi 的形式代入 再利用复数相等或其它途径 转化为与 a b 相关的等式 求出 a b 即可得到复数 z 在复数学习中有必要根据条件与待求结论的特点 通过研究问题的 整体形式 整体结构或作某些整体处理 这样往往可以避繁就简 化难为易 顺速解决问 题 六 典例分析 1 基本概念计算类 例 1 若 43 2 21 iziaz 且 2 1 z z 为纯虚数 则实数 a 的值为 解 因为 2 1 z z 25 46 83 25 8463 43 43 43 2 43 2iaaiaia ii iia i ia 又 2 1 z z 为纯虚数 所以 3a 8 0 且 6 4a 0 3 8 a 2 复数方程问题 例 2 证明 在复数范围内 方程 i i ziz 2 55 1 2 i 为虚数单位 无解 证明 原方程化简为 31 1 1 iziziz 设 z x yi x yR 代入上述方程 得 322 1 3122 22 22 yx yx iyixiyx 整理得05128 2 xx 0 16 方程无实数解 所以原方程在复数范围内无解 点评 本题主要考查复数方程等知识 一般是设 Z 的代数形式 利用复数相等的充要条件 转化为代数方程 3 综合类 例 3 设 z 是虚数 z z 1 是实数 且 1 2 1 求 z 的值及 z 的实部的取值范围 2 设 z z M 1 1 求证 M 为纯虚数 3 求 2 M 的最小值 分析 本题考查复数的概念 复数的模 复数的运算及不等式的知识 以及运算能力和推 理能力 解 1 设 z a bi a b0 bR 1 2222 i ba b b ba a a bia bia 因为 是实数 0 b 用心 爱心 专心 所以 1 22 ba 即 z 1 因为 2a 1 0 所以 2 M 2 2 3 1 当 a 1 1 1 a 即 a 0 时上式取等号 所以 2 M 的最小值是 1 点评 本题以复数的有关概念为载体 考查学生的化归能力 考查了均值不等式的应用 综合考查学生运用所学知识解决问题的能力 正是高考的重点 4 创新类 例 4 对于任意两个复数Ryyxxiyxziyxz 2121222111 定义运算 为 1 z 2 z 2121 yyxx 设非零复数 21 在复平面内对应的点分别为 21 P P 点 O 为坐标 原点 若 1 2 0 则在 21OP P 中 21OP P 的大小为 分析 本题立意新颖 解题入口宽 是一道不可多得的好题 解法一 解析法 设 0 21222111 aaibaiba 故得点 111 baP 222 baP 且 2121 bbaa 0 即1 2 2 1 1 a b a b 从而有 21 21 OPOP kk 1 2 2 1 1 a b a b 故 21 OPOP 也即 0 21 90 OPP 解法二 用复数的模 同法一的假设 知 2 1 2 1 2 1 2 1 baOP 2 2 2 2 2 2 2 2 baOP 2 2121 2 21 2 21 ibbaaPP 2 1 2 1 ba 2 2 2 2 ba 2 2121 bbaa 2 1 2 1 ba 2 2 2 2 ba 2 0 用心 爱心 专心 2 1 2 1 ba 2 2 2 2 ba 2 1 OP 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论