高中数学 1.2应用举例(一)全册精品教案 新人教A版必修5_第1页
高中数学 1.2应用举例(一)全册精品教案 新人教A版必修5_第2页
高中数学 1.2应用举例(一)全册精品教案 新人教A版必修5_第3页
高中数学 1.2应用举例(一)全册精品教案 新人教A版必修5_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用心 爱心 专心1 1 21 2 解三角形应用举例解三角形应用举例 第一课时第一课时 一 教学目标一 教学目标 1 能够运用正弦定理 余弦定理等知识和方法解决一些有关测量距离的实际问题 了解常用的 测量相关术语 2 激发学生学习数学的兴趣 并体会数学的应用价值 同时培养学生运用图形 数学符号表达题 意和应用转化思想解决数学问题的能力 二 教学重点 难点二 教学重点 难点 教学重点 教学重点 由实际问题中抽象出一个或几个三角形 然后逐个解决三角形 得到实际问题的解 教学难点 教学难点 根据题意建立数学模型 画出示意图 三 教学设想教学设想 1 1 复习旧知 复习旧知 复习提问什么是正弦定理 余弦定理以及它们可以解决哪些类型的三角形 2 2 设置情境 设置情境 请学生回答完后再提问 前面引言第一章 解三角形 中 我们遇到这么一个问题 遥不可 及的月亮离我们地球究竟有多远呢 在古代 天文学家没有先进的仪器就已经估算出了两者的距 离 是什么神奇的方法探索到这个奥秘的呢 我们知道 对于未知的距离 高度等 存在着许多可 供选择的测量方案 比如可以应用全等三角形 相似三角形的方法 或借助解直角三角形等等不同 的方法 但由于在实际测量问题的真实背景下 某些方法会不能实施 如因为没有足够的空间 不 能用全等三角形的方法来测量 所以 有些方法会有局限性 于是上面介绍的问题是用以前的方法 所不能解决的 今天我们开始学习正弦定理 余弦定理在科学实践中的重要应用 首先研究如何测 量距离 3 3 新课讲授新课讲授 1 解决实际测量问题的过程一般要充分认真理解题意 正确做出图形 把实际问题里的条件和所求 转换成三角形中的已知和未知的边 角 通过建立数学模型来求解 2 例 1 如图 设 A B 两点在河的两岸 要测量两点之间的距离 测量者在 A 的同侧 在所在的河 岸边选定一点 C 测出 AC 的距离是 55m BAC 51 ACB 75 求 A B 两点的距离 精确到 0 1m 提问提问 1 1 ABC 中 根据已知的边和对应角 运用哪个定理比较适当 提问提问 2 2 运用该定理解题还需要那些边 和角呢 请学生回答 分析 这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题 题目条件告诉了 边 AB 的对角 AC 为已知边 再根据三角形的内角和定理很容易根据两个已知角算出 AC 的对角 应用 正弦定理算出 AB 边 用心 爱心 专心2 解 根据正弦定理 得 ACB AB sin ABC AC sin AB ABC ACBAC sin sin ABC ACB sin sin55 7551180sin 75sin55 54sin 75sin55 65 7 m 答 A B 两点间的距离为 65 7 米 变式练习 两灯塔 A B 与海洋观察站 C 的距离都等于 a km 灯塔 A 在观察站 C 的北偏东 30 灯塔 B 在观察站 C 南偏东 60 则 A B 之间的距离为多少 老师指导学生画图 建立数学模型 解略 2a km 例 2 如图 A B 两点都在河的对岸 不可到达 设计一种测量 A B 两点间距离的方法 分析 这是例 1 的变式题 研究的是两个不可到达的点之间的距离测量问题 首先需要构造三角形 所以需要确定 C D 两点 根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法 分别求出 AC 和 BC 再利用余弦定理可以计算出 AB 的距离 解 测量者可以在河岸边选定两点 C D 测得 CD a 并且在 C D 两点分别测得 BCA ACD CDB BDA 在 ADC 和 BDC 中 应用正弦定理得 AC 180sin sin a sin sin a BC 180sin sin a sin sin a 计算出 AC 和 BC 后 再在 ABC 中 应用余弦定理计算出 AB 两点间的距离 AB cos2 22 BCACBCAC 分组讨论 还没有其它的方法呢 师生一起对不同方法进行对比 分析 变式训练 若在河岸选取相距 40 米的 C D 两点 测得 BCA 60 ACD 30 CDB 45 BDA 60 略解 将题中各已知量代入例 2 推出的公式 得 AB 206 评注 可见 在研究三角形时 灵活根据两个定理可以寻找到多种解决问题的方案 但有些过程较繁 复 如何找到最优的方法 最主要的还是分析两个定理的特点 结合题目条件来选择最佳的计算方式 4 4 学生阅读课本学生阅读课本 4 4 页 了解测量中基线的概念 并找到生活中的相应例子 页 了解测量中基线的概念 并找到生活中的相应例子 5 5 课堂练习 课堂练习 课本第 14 页练习第 1 2 题 6 6 归纳总结归纳总结 用心 爱心 专心3 解斜三角形应用题的一般步骤 1 分析 理解题意 分清已知与未知 画出示意图 2 建模 根据已知条件与求解目标 把已知量与求解量尽量集中在有关的三角形中 建立一个解斜 三角形的数学模型 3 求解 利用正弦定理或余弦定理有序地解出三角形 求得数学模型的解 4 检验 检验上述所求的解是否符合实际意义 从而得出实际问题的解 四 课后作业四 课后作业 1 课本第 22 页第 1 2 3 题 2 思考题 某人在 M 汽车站的北偏西 20 的方向上的 A 处 观察到点 C 处有一辆汽车沿公路向 M 站 行驶 公路的走向是 M 站的北偏东 40 开始时 汽车到 A 的距离为 31 千米 汽车前进 20 千米 后 到 A 的距离缩短了 10 千米 问汽车还需行驶多远 才能到达 M 汽车站 解 由题设 画出示意图 设汽车前进 20 千米后到达 B 处 在 ABC 中 AC 31 BC 20 AB 21 由 余弦定理得 cosC BCAC ABBCAC 2 222 31 23 则 sin 2 C 1 cos 2 C 2 31 432 sinC 31 312 所以 sin MAC sin 120 C sin120 cosC cos

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论